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Announcements

* Programming Assignment 1 is due tomorrow!

e Details: https://www.cs.rochester.edu/courses/252/
spring2021/labs/assignmenti.html

* DueonFeb. 17, 11:59 PM

e You have 3 slip days
: o

Today Due


https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2021/labs/assignment1.html

Announcements

* Will release programming assignment 2 today.
* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.



IEEE 754 Floating Point Standard

* Single precision: 32 bits

S exp frac

1 8-bit 23-bit

* Double precision: 64 bits

S exp frac

1 11-bit 52-bit

* |n C language
efloat single precision
«double double precision



Floating Point in C 32-bit Machine

© Data Bits  Max Value  ax Value
Type (Decimal)
char 8 27 _ 1 197
: , short 16 215 - 4 30767
Fixed point
. . . . . - t 31 _
(implicit binary point) . 32 231 -1 2147483647

long 64 263 - 1 ~9.2 x 1018

SP floating point float 30 (2-229) x 2127 ~3.4 x 10%

DP floating point double 64 (2 -252) x 21023 ~1.8 x 10308



Floating Point in C 32-bit Machine

C Data Bits Max Value Max Yalue
Type (Decimal)
char 8 27 - 1 127
_ | short 16 215 - 1 32767
Fixed point
: .. : : int 31 .
in 32 231 - 1 2147483647
(implicit binary point)
long 64 263 - 1 ~9.2 x 1018
SP floating point float 32 (2-228) x 2127 ~3.4 x 1038
DP floating point double 64 (2 -252) x 21023 ~1.8 x 10308

e To represent 231 in fixed-point, you need at least 32 bits
» Because fixed-point is a weighted positional representation

* |n floating-point, we directly encode the exponent

* Floating point is based on scientific notation
e Encoding 31 only needs 7 bits in the exp field



Floating Point Conversions/Casting in C

e double/float — int
 Truncates fractional part
* Like rounding toward zero
« Not defined when out of range or NaN
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Floating Point Conversions/Casting in C

e double/float — int
 Truncates fractional part
* Like rounding toward zero
» Not defined when out of range or NaN
e int @ float
« Can’t guarantee exact casting. Will round according to rounding mode

S exp frac

1 8-bit 23-bit
e int @ double

e Exact conversion

S exp

1 11-bit 52-bit




So far in 252...

int, float

C Program if, else
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So far in 252...

int, float

C Program if, else

. \Semantically " 7' 77
Compllerl Equivalent ret. call
Assembly fada, 2dd

Program imp, jne

Semantically
Assembled, Equi
auivalent 50001111
MIEEINE 01010101

Code 11110000
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Assembly
Program

Assembled,

Machine
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!

Processor
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So far in 252...

int, float
C Program if, else
. \Semantically > 7 7
Compllerl Equivalent ret. call
Assembly fadd, add
Program imp, jne
Semantically
Assembled, Equi
quivalent
Machine 00001111
01010101
Code 11110000

!

Fixed-point adder

Processor (e.q., ripple carry),
l Floating-point adder
. NAND Gate
Transistor

NOR Gate



So far in 252...

High-Level

Language C Program

!

Assembly
Program

!

Machine
Code

!

Processor

!

Transistor



So far in 252...

High-Level C Program * |SA: Software programmers’
Language view of a computer
l * Provide all info for someone wants
Assembly to write assembly/machine code
Instruction Set Program * “Contract” between assembly/
Architecture l machine code and processor
(ISA) Machine
Code
Processor

!

Transistor



So far in 252...

High-Level C Program * |SA: Software programmers’
Language view of a computer
l * Provide all info for someone wants
Assembly to write assembly/machine code
Instruction Set Program * “Contract” between assembly/
Architecture l machine code and processor

: e Processors execute machine
(ISA) Machine

Code code (bln.ary). Assembly
program is merely a text
l representation of machine

Processor code

!

Transistor



So far in 252...

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

!

Assembly
Program

!

Machine
Code

!

Processor

!

Transistor

e |[SA: Software programmers’
view of a computer

* Provide all info for someone wants
to write assembly/machine code

» “Contract” between assembly/
machine code and processor
* Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

e Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

8



This Module (4 Lectures)

High-Level
Language

Instruction Set

Architecture
(ISA)

Microarchitecture

Circuit

C Program ® Assembly Programming

l  Explain how various C
constructs are implemented in
Assembly assembly code
Program « Effectively translating from C to
l assembly program manually
Machine . Helpsllus unde&stand how
Code compilers wor
l * Helps us understand how
assemblers work

Processor e Microarchitecture is the
l topic of the next module

Transistor



Today: Assembly Programming |: Basics

 Different ISAs and history behind them

10



Instruction Set Architecture



Instruction Set Architecture

* There used to be many ISAs
* x86, ARM, Power/PowerPC, Sparc, MIPS, 1A64, z
* Very consolidated today: ARM for mobile, x86 for others
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Instruction Set Architecture

* There used to be many ISAs

* x86, ARM, Power/PowerPC, Sparc, MIPS, 1A64, z

* Very consolidated today: ARM for mobile, x86 for others
e There are even more microarchitectures

* Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

* Intel and AMD have different microarchitectures for x86
* |SA is lucrative business: ARM’s Business Model
* Patent the ISA, and then license the ISA
* Every implementer pays a royalty to ARM
* Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM'’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works



https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

Intel x86 ISA

* Dominate laptop/desktop/cloud market

12



Intel x86 ISA

* Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

MacBook Pro (Re-inch, Mid 2014)
Processor 2.6 u z Intel i5

Memory 8 GB 1600 Wz DDR3
Graphics Intel Iris 1536 MB

Serial Number CO02NVN6JG3QH

System Report... Software Update...



Intel x86 ISA

* Dominate laptop/desktop/cloud market

dolays Storage Support Service

OS X Yosemite

Version 10.10.5

Memory 8 GB 16004z DDR3
Graphics Intel Iris 1536 MB
Serial Number CO02NVN6JG3QH

System Report... Software Update...

amazon

web services

12



Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on
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Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Feature Notable :
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 8087

32-bit ISA (Refer to as IA32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium IlI

Intel’s first attempt at 64-bit ISA (IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

13



Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Fea

8-bi
16-I
Adc
32-|
Adc
Adc

Inte

Adc

Number of Instructions

1000
900 -
800 -
700
600 -
500 A
400 -+
300
200 A
100 -

oO+rrrrrrrrrrrrrrrrrrrrrrr T

Lo o DD ; PP b
A A I @Q & Y °bo°

Year

13



Backward Compatibility

* Binary executable generated for an older processor can
execute on a newer processor

* Allows legacy code to be executed on newer machines
* Buy new machines without changing the software
e X86 is backward compatible up until 8086 (16-bit ISA)

* i.e., an 8086 binary executable can be executed on any of today’s
Xx86 machines

* Great for users, nasty for processor implementers
e Every instruction you put into the ISA, you are stuck with it FOREVER

14



x86 Clones: Advanced Micro Devices (AMD)

*Historically ‘
* AMD build processors for x86 ISA

* A little bit slower, a lot cheaper
T AMD

 Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

» Developed x86-64, their own 64-bit x86 extension to [A32
e Built first 1 GHz CPU

¢ |ntel felt hard to admit mistake or that AMD was better
e 2004: Intel Announces EM64T extension to IA32

o AImost identical to x86-64!
« Today’s 64-bit x86 ISA is basically AMD’s original proposal

15



x86 Clones: Advanced Micro Devices (AMD)

*Today: Holding up not too badly
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x86 Clones: Advanced Micro Devices (AMD)

*Today: Holding up not too badly

Market Summary > Intel Corporation
+ Foll
NASDAQ: INTC

62.30 usp+0.49 (0.79%) +

Feb 16, 12:03 PM EST - Disclaimer

1 day 5 days 1 month 6 months YTD 1 year Syears Max

70 44.68 USD Dec 1,2017

60

50

40

30

20 I I I I I
2017 2018 2019 2020 2021
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x86 Clones: Advanced Micro Devices (AMD)

*Today: Holding up not too badly

Market Summary > Advanced Micro Devices, Inc.
NASDAQ: AMD

91.29 usp-2.48 (2.64%) +
Feb 16, 12:02 PM EST - Disclaimer

1 day 5 days 1T month 6 months YTD 1 year 5years Max

100 4.60USD May 27,2016
80
60
40
20

0

l l 1 1 l
2017 2018 2019 2020 2021

16



Our Coverage

e |[A32
e The traditional x86
o 2nd edition of the textbook

e X86-64
* The standard
o CSUG machine
 3rd edition of the textbook
« Our focus

17



Moore’s Law

* More instructions typically require more transistors to implement
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Moore’s Law

* More instructions typically require more transistors to implement

1000
900 -
800

Number of Instructions

100 -+
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® O & QU o> o D ®
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Year




Moore’s Law

* More instructions typically require more transistors to implement

2,600,000,000
1,000,000,000 -

100,000,000

10,000,000

1,000,000

Transistor count

100,000

10,000

2,300 -

16-Core SPARC T3
Six-Core Core i7.

Six-Core Xeon 7400\ s @10-Core Xeon Westmere-EX

Dual-Core ltanium 2@ @ (8)-coée POW%!G?
+—Quad-core z
AMD K10, +—Quad-Core Itanium Tukwila
POWERG® | ~—8-Core Xeon Nehalem-EX
Itanium 2 with 9MB cache ® "\ Six-Core Opteron 2400
AMD K10, Core i7 (Quad)
re 2 Duo
Itanium 2 @ 88"
AMD K8
®Barton
Pentium 4 ® Atom
AMD K7
@ AMD K&l
curve shows transistor AMD K6
H ® Pentium Il
count doubling every Pentum 11
two years
@®AMD K5
Pentium

T T T 1
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Moore’s Law

* More instructions require more transistors to implement
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Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year
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Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year
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Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

e |In 1975 he revised the prediction to doubling every 2 years
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Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

e |In 1975 he revised the prediction to doubling every 2 years

* Today’s widely-known Moore’s Law: number of transistors
double about every 18 months

* Moore never used the number 18...

19



Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
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* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
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Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?

* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
* A law of physics? No
* A law of circuits? No
* A law of economy? Yes

20



Moore’s Law

dl'S TECHNICA

TECH —

Transistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,

there are so many additional steps required that it costs a lot more to manufacture a completed

wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

20
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Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
* ~1.4x smaller each dimension(1.42 ~ 2)

e Moore’s Law is:

* A law of physics? No
* A law of circuits? No
* A law of economy? Yes

* A law of psychology?
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Moore’s Law

* Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
* ~1.4x smaller each dimension(1.42 ~ 2)

e Moore’s Law is:

* A law of physics? No
* A law of circuits? No
* A law of economy? Yes

* A law of psychology? Yes
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Today: Assembly Programming |: Basics

* Memory, C, assembly, machine code

21



Byte-Oriented Memory Organization

QQ. QQ.

* Programs refer to data by address
« Conceptually, envision it as a very large array of bytes: byte-addressable
e An address is like an index into that array
« and, a pointer variable stores an address

22



How Does Pointer Work in C?7??

char a = 4;
char b = 3;
char* c;
cC = &a;
b += (*c);
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How Does Pointer Work in C?7??

char a = 4;
char b = 3;
char* c;
cC = &a;

—p b += (*c) ;

e The content of a pointer

variable is memory address.
e The ‘&’ operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory
Variable Content Address

a 0Ox10
b Ox11
C Ox16
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How Does Pointer Work in C?7??

char a = 4;

char b = 3;

char* c;

cC = &a;
- b += (*c);

e The content of a pointer
variable is memory address.

e The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

e The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)
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How Does Pointer Work in C?7??

char a = 4;

char b = 3;

char* c;

cC = &a;
- b += (*c);

e The content of a pointer
variable is memory address.

e The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

e The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)
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b Ox11
C Ox16

23



Assembly Code’s View of Computer: ISA



Assembly Code’s View of Computer: ISA

Assembly
Programmer’s
Perspective
of a Computer

CPU

Memory
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Assembly Code’s View of Computer: ISA

Assembly CPU Memory
Programmer’s Code
: Data
Perspective St
ack
of a Computer

* (Byte Addressable) Memory

« Code: instructions Code

 Data (Instructions) Data

» Stack to support function call

Instruction is the fundamental

unit of work. " 0x78
All instructions are encoded as Oxfe
bits (just like data!) Oxe3

0x05



Assembly Code’s View of Computer: ISA

Assembly ot

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory

e Code: instructions
e Data
» Stack to support function call

Memory

Code
Data
Stack

Code
(Instructions)

Data

Stack

 0x53

0x48
0x89
0xd3
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Assembly Code’s View of Computer: ISA

Assembly CPU Register Memory
Programmer’s File %O?e
. dla
Perspective Stack
of a Computer

* (Byte Addressable) Memory

» Code: instructions
e Data

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data



x86-64 Integer Register File

% 8 Bytes >

srax %r8

srbx %r9

srcx %rl0
srdx srll
srsi %rl2
srdi %rl3
srsp srl4
srbp %rl5




x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

$rax !%eax

< 8 Bytes >
< 4 Bytes >




x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—>
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—>

«—1B—
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >

C Data Type | Size (Bytes) 2 Bytes —
— es

char 1 3:_1 B—

short 2
int 4
long 8
Pointer 8

26



x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >

C Data Type | Size (Bytes) 2 Bytes —
— es

char 1 3:_1 B—

short

int

2
. Floating point data is

long 8 stored in a separate set of
8

Pointer register file

26



Assembly Code’s View of Computer: ISA

Assembly CPU Register Memory
Programmer’s File %O?e
. dla
Perspective Stack
of a Computer

* (Byte Addressable) Memory

» Code: instructions
e Data

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data



Assembly Code’s View of Computer: ISA

Assembly oF Register Memory
Programmer’s || PC File %O?e
Perspective i
Stack
of a Computer
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

» Stack to support function call » Called "RIP” in x86-64

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly CPU [ Register Addresses | Memory
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of a Computer
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e Data of next instruction

» Stack to support function call » Called "RIP” in x86-64
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* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly CPU [ Register Addresses | Memory
Programmer’s || PC File %O?e
Perspective Stgcak
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

» Stack to support function call » Called "RIP” in x86-64

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly CPU Register Addresses | Memory
Programmer’s || PC File Data %O?e
Perspective < > Stgcak
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

» Stack to support function call » Called "RIP” in x86-64

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly GRD Register Addresses . Memory
Programmer’s PC File Data %O?e
Perspective < > Stgcak
ALU '
of a Computer < Instructions
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64

* Arithmetic logic unit (ALU)
« \Where computation happens

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly GRD Register Addresses . Memory
Programmer’s PC File Data ([3)0?9
: » ' ala
-erspective ALU | | Condition Tt ciructions Stack
Of d Computer Codes <
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64
* Arithmetic logic unit (ALU)
« \Where computation happens

e Condition codes

» Store status information about most
recent arithmetic or logical operation

o Used for conditional branch

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC Hile ode
. < Data > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap
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Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx

* C constructs: +, -, >>, etc.



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call

o C constructs: 1if-else, do-while, function call, etc.
28



Turning C into Object Code
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long vy,
long *dest)
{
long t = plus(x, y):;
*dest = t;

29



Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{ movq $rax, (%rbx)

long t = plus(x, y); Q
*dest = t; i:iq L2
}

29



Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{
mov Srax $rbx
long t = plus(x, y); popg %rbx, !
*dest = t; e
}

Obtain (on CSUG machine) with command
gcc -O0g -S sum.c -O0 sum.s
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Turning C into Object Code

Generated x86-64 Assembly

sumstore:
pushqg srbx
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)

PoPg $rbx
ret

30



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore:

pushqg srbx I\/Iemory

movq $rdx, %rbx 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret Oxe8
0x£f2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqg srbx

WEWE] GEREL, e 0x0400595  0x53

call plus 0x48

movq $rax, (%rbx) 0x89

pPopq $rbx 0xd3

2L Oxe8
O0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqg $rbx

movq %rdx, %rbx 0x0400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

pPopq $rbx 0xd3

ret Oxe8

Oxf2

Obtain (on CSUG machine) with command X

xff

gcc —C sum.s -O sum.o Oxff

0x48

0x89

0x03

0x5b

0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address I\/Iemory
pushqgq srbx

movq %rdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popdq $rbx 0xd3
ret Oxe8
O0x£f2
Obtain (on CSUG machine) with command e
xff
gcc —C sum.sS -O sSum.o Oxff
0x48
- Total of 14 bytes 0x89
- Instructions have variable 0x03
lengths: e.qg., 1, 3, or 5 bytes 8§Z§

- Code starts at memory address
0x0400595



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)
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Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction
(According to PC)

0x4801d8
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Instruction Processing Sequence

Assembly CPU Register Addresses . Memory
Programmer’s PC ile code
P . < Data > Data
erspeciive ALU Condition Instructions ek
of a Computer Codes <

Fetch Instruction __J Decode
(According to PC) Instruction

addq %rax, (%rbx)
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Instructions
<

Fetch
Operands

Memory

Code
Data
Stack
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Fetch
Operands

Instructions
<

Memory

Code
Data
Stack

Execute
Instruction

31



Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU Register Addresses Memory
. >
PC File Code
Data Data
ALU Condition Instructions SIS
Codes <
Decode Fetch __ Execute
Instruction Operands Instruction
v
Update
Condition

Codes

31



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results
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Condition
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Instruction Processing Sequence
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of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
v
Update
Condition
Codes y
Adjust

PC

31



Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [ Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
4 ;
\ 4
Update
Condition
Codes y
Adjust

PC

31



