CSC 252: Computer Organization
Spring 2022: Lecture 10

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcement

* Programming assignment 1 grades are out.

e |[f you see any issue, take a deep breadth and talk to a TA. We
will correct any mistakes on our part. We are your friends, not
your enemies actively trying to penalize you.

* Programming assignment 2 is due midnight today.
* Programming assignment 3 will be released today.



Announcement

* TAs are best positioned to answer your questions about
programming assignments!!!

 Programming assignments do NOT repeat the lecture materials.
They ask you to synthesize what you have learned from the
lectures and work out something new.

* Problem set on arithmetics: https://www.cs.rochester.edu/
courses/252/spring2021/handouts.html.

- Not to be turned in.


https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
https://www.cs.rochester.edu/courses/252/spring2021/handouts.html
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* |SA is the interface between
assembly programs and
microarchitecture

* Assembly view:

* How to program the machine,
based on instructions and
processor states (registers,
memory, condition codes, etc.)?

e |nstructions are executed
sequentially.

* Microarchitecture view:

* \WWhat hardware needs to be built to
run assembly programs*?

e How to run programs as fast
(energy-efficient) as possible?
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(Simplified) x86 Processor State

RF: Program CC:
registers Condition
$rax %rsp %r8 %rl2 codes
$rcx $rbp $r9 $rl3 ZF|SF|OF
$rdx grsi %$rl0 $rl4 PC

Stat: Program status

DMEM: Memory

$rbx

Frdi

$rll

$rl5

e Processor state is what’s visible to assembly programs. Also known as

architecture state.
e Program Registers: 16 registers.

e Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

e Program Counter: Indicates address of next instruction

e Program Status: Indicates either normal operation or error condition

e Memory

* Byte-addressable storage array
* \WWords stored in little-endian byte order
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Why Have Instructions?

e Why do we need an ISA? Can we directly program the hardware?

e Simplifies interface
e Software knows what is available
* Hardware knows what needs to be implemented
e Abstraction protects software and hardware
e Software can run on new machines
* Hardware can run old software
* Alternatives: Application-Specific Integrated Circuits (ASIC)

* No instructions, (largely) not programmable, fixed-functioned, so
no instruction fetch, decoding, etc.

* So could be implemented extremely efficiently.

* Examples: video/audio codec, (conventional) image signal
processors, (conventional) IP packet router



Today: Instruction Encoding

* How to translate assembly instructions to binary
 Essentially how an assembler works
* Using the Y86-64 ISA: Simplified version of x86-64



How are Instructions Encoded in Binary?

e Remember that instructions are stored in memory as bits (just
like data)

e Each instruction is fetched (according to the address specified
in the PC), decoded, and executed by the CPU

e The ISA defines the format of an instruction (syntax) and its
meaning (semantics)

* |dea: encode the two major fields, opcode and operand,
separately in bits.

* The OPCODE field says what the instruction does (e.g. ADD)
* The OPERAND field(s) say where to find inputs and outputs
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halt
nop
cmovXX rA, rB

irmovg V, rB

rmmovqg rA, D (rB)

mrmovg D (rB),
Opg rA, B

jXX Dest

rA

How to encode them in bits?
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rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

[ Jmp

Jle
jl

=
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Jge

&jg

[ rrmovq
cmovle
cmovl
cmove
cmovne

cmovge

&cmovg

e 27 Instructions, so need 5 bits
for encoding the operand

e Or: group similar instructions,
use one opcode for them, and
then use more bits to indicate
specific instructions within a
group.

* E£.9., 12 categories, so 4 bits

e There are four instructions within
the OPg category, so additional
2 bits. Similarly, 3 more bits for
JXX and cmovXX, respectively.

e Which one is better???
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Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

0

Operands

0

0

1

0

fn

0

0

0

fn

fn

- 5 6 7 8 9

* Design decision chosen by the textbook
authors (don’t have to be this way!)

* Use 4 bits to encode the instruction
category

* Another 4 bits to encode the specific
instructions within a category

e SO 1 bytes for encoding operand

* |s this better than the alternative of using
5 bits without classifying instructions?

* Trade-offs.

12



Encoding Registers

Each register has 4-bit ID
« Same encoding as in x86-64
« Register ID 15 (0xF) indicates “no register”

Srax 0 %r8 8
srex 1 %r9 9
Srdx 2 %$rl0 A
$rbx 3 $rll B
3rsp 4 %rl2 Cc
%rbp 5 %$rl3 D
grsi 6 %rl4 E
$rdi 7 No Register| F




Encoding

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA
Opg rA, B

jXX Dest

call Dest

ret

pushg rA

popg rA

egisters

0 1 2 3
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [ fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F

14



Instruction Example

Addition Instruction

addg rA, rB 6

rA

rB

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers

15
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Instruction Example

Addition Instruction

Text Assembly Form

/ Binary Representation

7

addqg rA, rB 6

rA

rB

« Add value in register rA to that in register rB

 Store result in register rB

e Set condition codes based on result

e €.0.,, addg Srax, srsi

« Two-byte encoding

Encoding: 60 06

» First indicates instruction type
« Second gives source and destination registers
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Arithmetic and Logical Operations

Add

addqg rA, rB 6 rA\rB
Subtract (rA from rB)

subg rA, rB 6 rA\rB
And

andq rA, rB 6 rA(rB
Exclusive-Or

xorq rA, rB 6 rA(rB

« Referred to generically as “Opg”

* Encodings differ only by “function
code”
» Low-order 4 bytes in first instruction
word

» Set condition codes as side effect

16



Move Instructions

Byte 0 1
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D((rB), rA {5 | 0 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910
pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

2

3

17
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Move Instructions

Byte 0 1 2 3 4 5 6 7 8 9

halt 0] 0

hop 5 The instruction length limits the
Immediate value and displacement.

cmovXX rA, rB 2 | fn|rA | rB

irmovg V, rB 310|F |rB Y%

rmmovqg rA, D (rB) 410 |rA|rB D

mrmovg D (rB), rA 510 |rA|rB D

Opg rA, B 6 [fn|rA|rB

jXX Dest 7 | fn

call Dest 8 |0

ret 910

pushg rA A|lOJrA|F

popqg rA B|OJ|rA|F
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Move Instruction Examples

Encoding:

Encoding:

Encoding:

Encoding:

Y86-64

irmovqg $0xabcd, $%$rdx

30 82 cd ab 00 00 00 00 00 0O

rrmovq 3%rsp, 5%rbx

20 43

mrmovqg -12 (%rbp) ,%$rcx

50 15 f4 ff ff f£f ff f£f ff ff

rmmovqg %rsi,Ox4lc(%rsp)

40 64 1c 04 00 00 00 0O 00 0O

18



Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0 1 2 3 4
00

110

2 | fnjrA | rB
310]F |(rB
410 |rA|rB
510|rA|rB
6 [ fn|rA |rB
7 | fn

810

910
A|O|rA| F
B|OJrA|F
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Byte

halt

nop
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call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 - 5 o L 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.
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Jump/Call Instructions

Byte
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nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2 3 4 5 o 7 8 9

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn Dest (essentially the target address)

810 Dest (essentially the start address of the callee)
910

A|O|rA|F

B|O|rA|F
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How Does An Assembler Work?

rmmovqg rA, D (rB)
OPg rA, B
jXX Dest

call Dest

0

rA

rB

D

fn

rA

rB

fn

Dest

Dest
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How Does An Assembler Work?

rmmovg rA, D (rB) 410 |rA|rB D
OPqg rA, B 6 |fn|rA|rB

jxXx Dest 7 | fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovg %rsi,0x4lc (%rsp)

ret

addq %rax,%rsi

call <foo>

jmp .LO

.LO irmovg $0xabcd, %rdx
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How Does An Assembler Work?

rmmovqg rA, D (rB)

OPg rA, rB

jXX Dest

call Dest

0x100 <foo>

.LO

410 |rA|rB D

6 |fn|rA|rB

7 1 fn Dest

8|0 Dest
rmmovqg %rsi,0x4lc (%rsp) 40 64 1c 04 00 00 00 00 00 OO
ret 90
addg %rax, %rsi 60 06
call <foo> 80 00 01 00 00 00 00 0O OO
jmp .LO 70 22722272727

irmovg $0xabcd, %rdx
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rmmovqg rA, D (rB)

OPg rA, rB

jXX Dest

call Dest

0x100 <foo>

.LO

410 |rA|rB D
6 |fn|rA|rB
7 | fn Dest
810 Dest
rmmovqg %rsi,0x4lc (%rsp) 40 64 1c 04 00 00 00 00 00 OO

ret

addq %rax,%rsi

call <foo>

jmp .LO

irmovg $0xabcd, %rdx

90

60

80

70
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06

00 01 00 00 00 00 00 0O

RPP72272777

f2 cd ab 00 00 00 00 0O OO
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How Does An Assembler Work?

rmmovg rA, D (rB) 410 |rA|rB D
OPqg rA, B 6 |fn|rA|rB

jxXx Dest 7 | fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovqg %rsi,Ox4lc(%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret 90
Ox100 + the
lengths of all | addg %rax, %rsi 60 06
instructions
in-between | call <foo> 80 00 01 00 00 00 00 00 00
jmp .LO 70 00 02 00 00 00 00 00 00
v

0x200 .LO irmovqg $0xabecd, %$rdx 30 £2 cd ab 00 00 00 00 00 0O




How Does An Assembler Work?

* The assembler is a program that translates assembly code to binary code
* The OS tells the assembler the start address of the code (sort of...)

* Translate the assembly program line by line

e Need to build a “label map” that maps each label to its address

0x100 <foo> | rmmovqg %rsi,Ox4lc(%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret 90
Ox100 + the
lengths of all | addg %rax, %rsi 60 06
instructions
in-between | call <foo> 80 00 01 00 00 00 00 00 00
jmp .LO 70 00 02 00 00 00 00 00 00
v

0x200 .LO irmovqg $0xabecd, %$rdx 30 £2 cd ab 00 00 00 00 00 0O
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Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 7|3 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jgeDest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest

22



Subroutine Call and Return

call Dest

Dest

e Push address of next instruction onto stack

 Start executing instructions at Dest
 Like x86-64

ret

e Pop value from stack
» Use as address for next instruction
e | ike x86-64

23



One More Complication...

Byte
jXX Dest

call Dest

0 1 2 3 4 5 6 7
7 | fn Dest (essentially the target address) jle .14
8|0 Dest (essentially the start address of the callee) call foo
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e Or if we can use only say 4 bytes for the target address?
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Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

* The instruction length limits how far you can jump/call functions. What
if the jump target has a very long address that can’t fit in 8 bytes?

e Or if we can use only say 4 bytes for the target address?
e One alternative: use a super long instruction encoding format.

* Simple to encode, but space inefficient (waste bits for jumps to short
addr.)

e Another alternative: encode the relative address, not the absolute
address

e E.g., encode (.L4 - current address) in Dest
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Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

0x100

0x180

0x185

0x200

<foo>

.LO

rmmovqg %rsi,0x4lc (%rsp)

ret

addq %rax,%rsi

call <foo>

jmp .LO

irmovg $0xabcd, %rdx

40

90

60

80

70

30

64

06

06

00

£2

lc 04 00 00 00 00 0O

00 01 00 00 00 OO OO

02 00 00 00 00 OO OO

cd ab 00 00 00 00 OO

00

00

00
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Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

e |[f we use relative address, the exact start address of the code
doesn’t matter. Why?
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Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

e |[f we use relative address, the exact start address of the code
doesn’t matter. Why?

e This code is called Position-Independent Code (PIC)

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,0x4lc (%rsp)

relative addr:

ret

addq %rax,%rsi

call <foo>

jmp .LO

irmovqg $0xabcd,

64 1c 04 00 00 00 00 00 OO

06

00 00 00 11 11 11 11 11

7B 00 00 00 00 0O OO OO

f2 cd ab 00 00 00 00 0O OO



Miscellaneous Instructions

nop 10

« Don’t do anything

halt 0|0

e Stop executing instructions
« Usually can’t be executed in the user mode, only by the OS
« Encoding ensures that program hitting memory initialized to zero will halt
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Variable Length Instructions
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Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
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Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

e A good writeup showing some of the complexity involved:
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