
CSC 252: Computer Organization 
 Spring 2022: Lecture 11 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcements
• Programming assignment 3 is out

• Details: https://www.cs.rochester.edu/courses/252/spring2022/labs/
assignment3.html

• Due on March 3, 11:59 PM
• You (may still) have 3 slip days

Today

Due
Mid-term

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html

Carnegie Mellon

!3

Announcements
• Grades for Lab 1 are posted.

•We are processing regrading requests

•Will grade Lab 2 soon.

• Programming assignment 3 is in x86 assembly language. Seek
help from TAs.

• TAs are best positioned to answer your questions about
programming assignments!!!

• Programming assignments do NOT repeat the lecture materials.
They ask you to synthesize what you have learned from the
lectures and work out something new.

Carnegie Mellon

!4

So far in 252…

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

!5

Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

Overview of Circuit-Level Design
• Fundamental Hardware Requirements

• Communication: How to get values from one place to another. Mainly
three electrical wires.

• Computation: transistors. Combinational logic.
• Storage: transistors. Sequential logic.

•Circuit design is often abstracted as logic design

�6

Voltage

Time

0 1 0

Carnegie Mellon

!7

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

!8

Inverter (NOT Gate)
+1.2V

+0.0V

Carnegie Mellon

!8

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

Carnegie Mellon

!8

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

!8

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

Carnegie Mellon

!8

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!8

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

!9

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.

Carnegie Mellon

!10

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Falling Delay

Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs
• Primary outputs become (after some delay) Boolean functions of

primary inputs

�12

Primary
Inputs

Primary
Outputs

Carnegie Mellon

Bit Equality

�13

Carnegie Mellon

Bit Equality

�13

Carnegie Mellon

Bit Equality

�13

a

b

Carnegie Mellon

Bit Equality

�13

a

b

Carnegie Mellon

Bit Equality

�13

a

b

Carnegie Mellon

Bit Equality

�13

a

b

Carnegie Mellon

Bit Equality

�13

a

b

Carnegie Mellon

Bit Equality

�13

a

b

eq

Carnegie Mellon

Bit Equality

�13

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�14

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�14

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�14

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�14

Bit equal
a

b

eq1

4.3

4.7

Critical Path

Carnegie Mellon

Glitch/Hazard

�15

A

B

C

F

F

Carnegie Mellon

Glitch/Hazard

�15

A

B

C

F

F

Carnegie Mellon

Glitch/Hazard

�15

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

F

F

Carnegie Mellon

Glitch/Hazard

�15

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

• Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

F

F

Carnegie Mellon

Glitch/Hazard

�15

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

• Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

• Without care, glitch power
dissipation is 20%-70% of
total power dissipation.F

F

Carnegie Mellon

64-bit Equality

�16

=
B

A

Eq

Carnegie Mellon

64-bit Equality

�16

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of
this implementation?

1

4.7
4.3

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

!19

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

• Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

• Logic design uses the gate-level abstractions
• VLSI tells you how the gates are implemented at transistor-level

!19

Carnegie Mellon

!20

Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Carnegie Mellon

!20

Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)

 | (A & ~B & Cin)

 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!21

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

Carnegie Mellon

!21

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!21

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!22

Recall: Four-bit Adder

Carnegie Mellon

!22

Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

!22

Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

OF
ZF
CF

Arithmetic Logic Unit

�23

A
L
U

Y

X

Result of some computation
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:

• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11

• How can this ALU be implemented?

Carnegie Mellon

Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�24

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out

Carnegie Mellon

!25

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.

Carnegie Mellon

!26

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.

Carnegie Mellon

Build a 1-Bit Storage

�27

Q

D

C

Some Logic

•What we would like:

• D is the data we want to store (0 or 1)
• C is the control signal

• When C is 1, Q becomes D (i.e., storing the data)
• When C is 0, Q doesn’t change with D (data stored)

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1
0

Carnegie Mellon

Bitstable Element

�28

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�30

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control 0

1
0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C

�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C
•Output remains stable at all

other times
�32

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Why Use a Flip-Flop?

�33

A

B

C

FDFF

F

F

• Because the data we want to store
might be temporarily changing before
it settles down (due to glitch). We
want to capture only the final value.

• If we had a transparent D latch, the
latched value would change with F,
i.e., temporal glitches will be
temporarily stored as well.

•With a flip flop, we can store data only
when its value settles: raise the control
signal of the flop when F settles.

Carnegie Mellon

Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal

�34

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

C

Structure

Carnegie Mellon

Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal

�34

I O

C

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

C

Structure

Carnegie Mellon

Register Operation

�35

State = x

Output = xInput = y
x

C

Carnegie Mellon

Register Operation

�35

State = x

Output = xInput = y
x

C Rises

C

Carnegie Mellon

Register Operation

�35

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want

to store the input data to the register

�35

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want

to store the input data to the register

�35

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C Output continuously produces
y after the rising edge unless
you cut off power.

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�36

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�36

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�36

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

x0 x1 x2 x3 x4 x5In

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�36

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.

�37

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.

�37

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.

�37

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

�37

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

• The cycle time is 1/10^9 = 1 ns

�37

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

