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Announcements
• Programming assignment 3 is out


• Details: https://www.cs.rochester.edu/courses/252/spring2022/labs/
assignment3.html 

• Due on March 3, 11:59 PM 
• You (may still) have 3 slip days

Today

Due
Mid-term

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
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Announcements
• Grades for Lab 1 are posted.

•We are processing regrading requests

•Will grade Lab 2 soon.


• Programming assignment 3 is in x86 assembly language. Seek 
help from TAs.


• TAs are best positioned to answer your questions about 
programming assignments!!!


• Programming assignments do NOT repeat the lecture materials. 
They ask you to synthesize what you have learned from the 
lectures and work out something new.
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So far in 252…

C Program

Assembly 
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture
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Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data
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Overview of Circuit-Level Design
• Fundamental Hardware Requirements


• Communication: How to get values from one place to another. Mainly 
three electrical wires. 

• Computation: transistors. Combinational logic. 
• Storage: transistors. Sequential logic. 

•Circuit design is often abstracted as logic design

�6

Voltage

Time

0 1 0
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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Inverter (NOT Gate)
+1.2V

+0.0V
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Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V
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NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
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• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)
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a
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a
b out a out

out = a && b out = a || b out = !a
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Time
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�11

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Falling Delay
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Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs 
• Primary outputs become (after some delay) Boolean functions of 

primary inputs

�12

Primary
Inputs

Primary
Outputs
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Bit Equality

�13

Bit equal
a

b

eq
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7

�14

Bit equal
a

b

eq
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis

�14

Bit equal
a

b

eq1

4.3

4.7

Critical Path
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Glitch/Hazard

�15

A

B

C

• A glitch is an unnecessary 
signal transition without 
functionality.

• Why is it bad? When 
transistors switch they 
consume power, but the 
power consumed during a 
glitch is a waste.

• Without care, glitch power 
dissipation is 20%-70% of 
total power dissipation.F

F
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64-bit Equality
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64-bit Equality
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b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�17

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�18

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of 
this implementation?

1

4.7
4.3
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of 

outputs of a gate (fan-out) will affect the gate delay.
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of 

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGOs, using which you generate the 

gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and 

appropriately characterized logic gates (delay, operating 
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best” 
gate-level implementation of a piece of logic.

• Take a Logic Design or Very Large Scale Integrated-Circuit 
(VLSI) course if you want to know more about circuit design.


• Logic design uses the gate-level abstractions 
• VLSI tells you how the gates are implemented at transistor-level

!19
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Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)

        | (A & ~B & ~Cin)

        | (A &  B &  Cin)

Cou = (~A & B & Cin)

        | (A & ~B & Cin)

        | (A & B & ~Cin)
        | (A &  B &  Cin)
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Recall: Four-bit Adder
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Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width
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Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously
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OF
ZF
CF

Arithmetic Logic Unit

�23

A
L
U

Y

X

Result  of some computation 
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:


• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11


• How can this ALU be implemented?
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Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�24

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter
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The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.
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Build a 1-Bit Storage

�27

Q

D

C

Some Logic

•What we would like:

• D is the data we want to store (0 or 1) 
• C is the control signal 

• When C is 1, Q becomes D (i.e., storing the data) 
• When C is 0, Q doesn’t change with D (data stored)
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Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1



Carnegie Mellon

Bitstable Element

�28

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.
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Storing and Accessing 1 Bit

�29
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Storing and Accessing 1 Bit

�29

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR
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Storing and Accessing 1 Bit

�29

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR
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Storing and Accessing 1 Bit

�29

1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q
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Q–
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Storing and Accessing 1 Bit

�29

Setting Q+ to 0
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0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q
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Q–

R
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!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R
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!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR
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!q q

q !q

Storing and Accessing 1 Bit

�29

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR
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!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR
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!q q

q !q

Storing and Accessing 1 Bit

�29

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S
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Building on top of R-S Latch

�30

Q+

Q–

R

S

D

C

Data

Control

If R and S are different, Q+ is the same as S
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Building on top of R-S Latch
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Q+ will continuously 
change as d changes
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Building on top of R-S Latch
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Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Q+ will continuously 
change as d changes

If R and S are different, Q+ is the same as S
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If R and S are different, Q+ is the same as S
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Building on top of R-S Latch

�30

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously 
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S
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D-Latch is “Transparent”
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+. 

So hold C for a while until the signal is fully propagated

�31

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C



Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+. 

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+. 

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
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Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+. 

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
• Value latched depends on data 

as C rises (i.e., 0–>1); usually 
called at the rising edge of C
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period
• Value latched depends on data 

as C rises (i.e., 0–>1); usually 
called at the rising edge of C
•Output remains stable at all 

other times
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Why Use a Flip-Flop?

�33

A

B

C

FDFF

F

F

• Because the data we want to store 
might be temporarily changing before 
it settles down (due to glitch). We 
want to capture only the final value. 

• If we had a transparent D latch, the 
latched value would change with F, 
i.e., temporal glitches will be 
temporarily stored as well. 

•With a flip flop, we can store data only 
when its value settles: raise the control 
signal of the flop when F settles.
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Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal
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Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)
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Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want 

to store the input data to the register
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Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want 

to store the input data to the register

�35

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C Output continuously produces 
y after the rising edge unless 
you cut off power.
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Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator 

inside your computer.
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• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator 
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Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
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Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

• The cycle time is 1/10^9 = 1 ns
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Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time


