CSC 252: Computer Organization
Spring 2022: Lecture 14

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcements

* Programming assignment 3 is out

* Details: https://www.cs.rochester.edu/courses/252/spring2022/labs/
assignment3.html

* Due on March 3, 11:59 PM
* You (may still) have 3 slip days
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Announcements

e Grades for Lab 2 are posted.

e Programming assignment 3 is in x86 assembly language. Seek help
from TAs.

e TAs are best positioned to answer your questions about
programming assignments!!!

e Programming assignments do NOT repeat the lecture materials. They
ask you to synthesize what you have learned from the lectures and
work out something new.

e Mid-term exam: March 3; online.

e Past exam & Problem set: https://www.cs.rochester.edu/courses/
252/spring2022/handouts.html

e Exam will be electronic using Gradescope.
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Announcements

e Open book test: any sort of paper-based product, e.g., book,
notes, magazine, old tests.

e Exams are designed to test your ability to apply what you have
learned and not your memory (though a good memory could help).

¢ Nothing electronic (including laptop, cell phone, calculator,
etc) other than the computer you use to take the exam.

¢ Nothing biological, including your roommate, husband, wife,
your hamster, another professor, etc.

¢ ‘| don’t know” gets15% partial credit. Must erase everything else.



Control Dependency

e Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

o Jump instruction example below:

e jne L1 determines whether irmovg $1, %rax should be
executed

« But yne doesn’t know its outcome until after its Execute stage

1 2 3 4 5 6

X0rg %srax, srax F' D E M W
jne L1 # Not taken F D E M W
nop F DNE M W
nop F\D E M W
irmovg $1, %rax # Fall Through D E M W
L1 irmovg $4, %rcx # Target F' D E M
F | D

irmovg $3, %rax # Target + 1




Resolving Control Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
o Stalling (Think of it as hardware automatically inserting nops)
e Branch Prediction
e Return Address Stack



Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

R R R R wite R

Fetch el Decode |e| Execute |e| Memory |e e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
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Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

jle xorq
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g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?
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R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
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Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

Stall (Bubble) jle xXorq
nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble) jle xorq
nop nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble) jle
nop nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (Bubble) (Bubble)
nop nop
Fetch el Decode |e| Execute |e| Memory |e Write e
9 g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add (BUbb'G)
nop
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

add
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

o Stall: the pipeline register shouldn’t be written
« Bubble: signals correspond to a nop
« Why is it good for the hardware to do so anyways”?

R R R R wite R

Fetch el Decode |e| Execute |e| Memory |e e
g g g g back g
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How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x
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Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M

L1 irmovg $4, S%rcx # Target F D | E
irmovg $3, %rax # Target + 1 F D M




Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction
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Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

X0rg %srax, srax F p/E M w
jne L1 # Not taken F¥ D E M W
irmovg $1, %$rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F DI E M | W
irmovg $3, %rax # Target + 1 F D E M W




Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

e Always Taken

e Always Not-taken
Dynamic Prediction

e Dynamically predict taken/not-taken for each specific jump instruction

10
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Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

11
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Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Cllmpq $rsi, srdi <before>
Jle .corner case Ll: <body>
<do A>
— \ cmpg B, A
.corner case: o
<do B> Mostly not taken J .

ret <after>
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_ \ cmpg B, A

.corner case:
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Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., if-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

CIMpq srsi,srdi <before>
Jle -COLNEL Case .L1: <body> Mostly taken
<do A>

_ \ cmpg B, A

.corner case:

<do B> Mostly not taken J1 L1
ret <after>

11



Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets”?

¢ \What if you know that hardware uses the always non-taken
branch prediction?

if (cond) { 1f (!cond) {
do A() do B()
} else | } else {

do B () do A()

12



Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

13



Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}
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Dynamic Prediction

e Simplest idea:

e [f last time taken, predict taken; if last time not-taken, predict
not-taken

* Called 1-bit branch predictor
* \WWorks nicely for loops

for (1i=0; 1 <5; i++) {..}

lteration #1 0 1 2 3 4
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Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind
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Dynamic Prediction

 With 1-bit prediction, we change our mind instantly if mispredict

* Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (i=0; 1 <5; i++) {..}
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More Advanced Dynamic Prediction

* | ook for past histories across instructions

e Branches are often correlated

* Direction of one branch determines another

condl branch not-
taken means (x <=0)
branch taken

x = 0

if (condl) x = 3
1f (cond2) y = 19
if (x <= 0) z = 13

15



What Happens If We Mispredict?

# demo-7.ys 1 2 3 B! 5 6 7 8 9 10
0x000: xorqg %*rax, 3rax F D E M| W
0x002: jne target # Not taken F D E M| W
0x016: irmovq $2,%rdx # Target F D
bubble LE|mM|w
0x020: irmovqg $3, %rbx # Target+l F
bubble LpleE|[M]|w
0x00b: irmovq $1,%rax # Fall through F D E M| W
0x015: halt F D E M| W

Cancel instructions when mispredicted
* Assuming we detect branch not-taken in execute stage

« On following cycle, replace instructions in execute and
decode by bubbles

* No side effects have occurred yet

16



Return Instruction

0x000: irmovqg Stack,%rsp # Intialize stack pointer
0x00a: call p # Procedure call

0x013: irmovqg $5,%rsi # Return point

0x01d: halt

0x020: s 0x20

0x020: irmovg $-1,%rdi # procedure

0x02a: ret

0x02b: irmovqg $1,%rax # Should not be executed
0x035: irmovg $2,%rcx # Should not be executed
0x03f: irmovqg $3,%rdx # Should not be executed
0x049: irmovqg $4,%rbx # Should not be executed
0x100: .pos 0x100

0x100: Stack: # Stack: Stack pointer



Stalling for Return

0x026: ret F| D| E| M| W

nop F| D| E| M| W

nop F| D| E| M| W

nop F| D| E| M| W
0x013: irmovg $5, %rsi # Return F D E M

= As ret passes through pipeline, stall at fetch stage
e While in decode, execute, and memory stage

= Inject bubble into decode stage
= Release stall when reach write-back stage

18



Return Address Stack (RAS)

e Stalling for return is silly since we know where exactly we need
to jump to, except the jump target is retrieved later in the
memory stage.

* Can we get that sooner? Where should we get it?

19



Return Address Stack (RAS)

Branch Predictor

PC
push return link pop return address
on procedure call on procedure return

A hardware stack;
different from the
stack in memory.

{ Return-address §
stack

\

predicted
next PC

20



Today: Making the Pipeline Really Work

e Data Dependencies
* Inserting Nops
e Stalling
 Out-of-order execution

21



Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovqg 100 (%rbx) ,

$rdx

22



Data Dependencies
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$rdx
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Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 5%rbx

3 mrmovq 100(%r5§),

$rdx
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Data Dependencies

1 irmovg $50, S%rax
2 addq $rax, 3rbx
3 mrmovqg 100 (%rbx), %rdx

« Result from one instruction used as operand for another
» Read-after-write (RAW) dependency

« \Very common in actual programs

« Must make sure our pipeline handles these properly
» Get correct results

* Minimize performance impact

22



A Subtle Data Dependency

« Jump instruction example below:

L1

e jne L1 determines whether irmovg $1, %rax should be executed
« But jne doesn’t know its outcome until after its Execute stage.

Why?

1 2 3 4 5 6 7 8 9
X0rg %srax, srax F D E M W
jne L1 # Not taken F D E M W
nop F D E M W
nop F D E M W
irmovg S$1, %rax # Fall Through F D E M W
irmovg $4, %$rcx # Target F D E M
irmovg $3, %rax # Target + 1 F D | E

23



A Subtle Data Dependency

« Jump instruction example below:
e jne L1 determines whether irmovg $1, %rax should be executed

« But jne doesn’t know its outcome until after its Execute stage.
Why?

« There is a data dependency between xorg and jne. The “data” is the
status flags.

X0rg srax, Ssrax F D EJLM W

jne L1 # Not taken F D*E M W

nop F D E M W

nop F D E M| W

irmovg S$1, %rax # Fall Through F D E M W
L1 dirmovg $4, %rcx # Target F D E M

irmovg $3, %rax # Target + 1 F D E

23



Data Dependencies in Single-Cycle Machines

Combinational I:
lodi
ogic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:
« Each operation starts only after the previous operation finishes.

Dependency always satisfied.



Data Dependencies in Pipeline Machines

Comb. R Comb. Comb. R
logic e logic logic e
A g B C g
lock
o1 [ A ] BJ[C Cloc
OP2 A B C
OP3 A B C
OP4 A B C
Time

Data Hazards happen when:

» Result does not feed back around in time for next operation

25



Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
ori[A [ B | CJ o
OP2 Al B | C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
» Result does not feed back around in time for next operation



Data Dependencies: No Nop

0x000:
0x00a:
0x014:
0x01l6:

Remember registers get
updated in the Write-back stage

irmovg $10, %$rdx
irmovg $3,%rax
addg %rdx, srax

halt

1

2

3

4

5

6

F|{ D| E| M| W
F|{ D E| M| W
F|I D[ E| M| W
F| D| E| M| W

7

8
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Data Dependencies: No Nop

0x000:
0x00a:
0x014:
0x01l6:

Remember registers get
updated in the Write-back stage

irmovg $10, %$rdx
irmovg $3,%rax
addg %rdx, srax

halt

1

2

3

4

5

6

F|{ D| E| M| W
F|{ D E| M| W
F|I D[ E| M| W
F| D| E| M| W

7

addq reads wrong %rdx and %rax

8
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Data Dependencies: 1 Nop

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, $rdx
irmovg $3,%rax
nop

addg 5%rdx, $rax

halt

1 2 3 4 5 6 7 8
F| D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D| E| M| W
F| D| E| M

27



Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x018:

addq reads the correct %rdx,

1 2 3 4 5 6 7 8 9 10
irmovg $10, $rdx F D E|l M| W
irmovg $3,%rax F D E|l M| W
nop F| D| E| M| W
nop F| D| E| M| W
addg $rdx, $rax F D E M| W
halt F| D| E| M| W

but %rax still wrong

28



Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
nop

addg 5%rdx, $rax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 M1
F| D| E| M| W
F| D| E| M| W
F| D| E| M| W
F| D E| M| W
F| D E| M| W
F| D| E| M| W

F| D| E| M| W

29



Resolving Data Dependencies

o Software Mechanisms

« Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Hardware mechanisms
 Stalling
e Forwarding
» Qut-of-order execution

30



Hardware Generated Nops (Bubble and Stalling)

Fetch

Decode

Execute

Memory

Write
back
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Hardware Generated Nops (Bubble and Stalling)
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Hardware Generated Nops (Bubble and Stalling)

wr R2

Fetch

wr R1

Decode

Execute

Memory

Write
back
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Hardware Generated Nops (Bubble and Stalling)

rd R1 R2

Fetch

wr R2

Decode

wr R1

Execute

Memory

Write
back
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Hardware Generated Nops (Bubble and Stalling)

rd R3 R4

Fetch

rd R1 R2

Decode

wr R2

Execute

wr R1

Memory

Write
back
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Hardware Generated Nops (Bubble and Stalling)

Stall
rd R3 R4 rd R1 R2 wr R2 wr R1
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

Stall Stall
rd R3 R4 rd R1 R2 wr R2 wr R1
R R R R - R
Fetch el Decode |e| Execute |e| Memory |e Write e
g g g g back g




Hardware Generated Nops (Bubble and Stalling)

Stall

rd R3 R4

Fetch

Stall

rd R1 R2

Decode

bubble
(nop)

Execute

wr R2

Memory

wr R1

Write R
back g
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Hardware Generated Nops (Bubble and Stalling)
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rd R1 R2
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bubble
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Memory

wr R2

Write
back

31



Hardware Generated Nops (Bubble and Stalling)
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Hardware Generated Nops (Bubble and Stalling)

Fetch

rd R3 R4

Decode

rd R1 R2

Execute

bubble
(nop)

Memory

bubble
(nop)

Write
back

31



Hardware Generated Nops (Bubble and Stalling)

Fetch

Decode

rd R3 R4

Execute

rd R1 R2

Memory

bubble
(nop)

Write
back

31



Hardware Generated Nops (Bubble and Stalling)

Fetch

Decode

Execute

rd R3 R4

Memory

rd R1 R2

Write R
back g

31



Hardware Generated Nops (Bubble and Stalling)

Fetch

Decode

Execute

Memory

rd R3 R4

Write R
back g

31
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Detecting Stall Condition

» Using a “scoreboard”. Each register has a bit.
« Every instruction that writes to a register sets the Dbit.

« Every instruction that reads a register would have to check the bit first.
o If the bit is set, then generate a bubble
o Otherwise, free to go!!

32



Detecting Stall Condition

0x000:
O0x00a:

0x014:
0x016:

irmovg $10, $rdx F E1T M| W
irmovg $3,%rax DI EIM|W
bubble  E M| W
bubble  E M| W
bubble |- rreE| M| W
addg $rdx, $rax F|D|DJ|D|D EI(M| W
halt F F F F D E M
Cycle 6
W
Cycle 5 W_dStE = $rax
M
Cycle4  |M_dstE = srax .
E . .
e_dstE = $rax .
D D D
SrcA = $rdx SrcA = $rdx SrcA = $rdx
srcB = $rax srcB = $rax srcB = $rax
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Data Forwarding

Naive Pipeline
« Register isn’t written until completion of write-back stage
e Source operands read from register file in decode stage
* The decode stage can’t start until the write-back stage finishes
Observation
 Value generated in execute or memory stage
Trick
« Pass value directly from generating instruction to decode stage
« Needs to be available at end of decode stage

34



Data Forwarding Example

0x000: irmovg $10, $rdx F D E M W

0x00a: irmovg $3,%rax F D E M| W

0x014: nop F Dl E| M| W

0x015: nop F| DL E| M| W

0x016: addg % rdx, $rax F D E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.



Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovqg $10, $rdx F D E Ml W

0x00a: irmovg $3,%rax F D E Ml W

0x014: nop F Dl EfM| W

0x015: nop FI DIE| M| W

0x016: addg % rdx, $rax FwD E M| W
0x018: halt F| D| E| M| W

e irmovg writes $rax to the register file at the end of the write-back
stage

« But the value of $rax is already available at the beginning of the write-
back stage

« Forward $rax to the decode stage of addg.



Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4

F | D M| W

F E|M|W
Dl E| M| W
F|{D|E | M
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Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

3

4

F|D|EJM|W
F|DJIE|M|W
FyD|E| M| W
F|{D|E | M
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Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
O0x01l6: halt

Register $rdx
« Forward from the memory stage
Register $rax

« Forward from the execute stage

2

e #2

4

F|D M| W

F E|[M|wW
bl E|[M|W
F|D|E|M
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Hardware Design

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory
Addr, Data
Execute
A B

Decode Register M

file -

Write back
Fetch Instruction PC
memory increment
predPC

PC
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Limitation of Forwardlng

# demo-luh.ys 1 2 4 5 6 7 8 9 10 11
0x000: irmovg $128,%rdx F D E M| W
0x00a: irmovg $3,%rcx F D E M| W
0x014: rmmovg %rcx, 0(%rdx) F D E M W
0x0le: irmovg $10, Srbx F D E M| W
0x028: mrmovg 0O(%rdx), *rax # Load %rax F D E M W
0x032: addg “rbx, *rax # Use %rax FID|E|M|W
Ix034: 1alt F D E M W
Load-use dependency Cycle 7 Cycle 8
 Value needed by end of decode M M
. e 7 M_dsiE = “ rbx M_dstM = " rax
Stage INn CyCle M_valE =10 =1 | m_valM « M[128] =
 Value read from memory in
memory stage of cycle 8
D
4

valA « M_valE =10 o

valB « R[%rax] =

Error
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Avoiding Load/Use Hazard

# demo-luh.ys 7 8 9 10 11 12
0x000: irmovg $12 srdx F D E M| W
0x00a: irmovg $3,%rcx F D E M| W
0x014: rmmovg %rcx, 0(%rdx) F D E M| W
0x0le: irmovqg $10, Srbx F D E M| W
0x028: mrmovg 0(%rdx),%rax # Load %rax F D E M W
bubble | E M| W
0x032: addg *rbx, %rax # Use %rax F D D E M| W
0x034: halt FIF|D|E| M|W
o Stall using instruction for one cycle Cycle 8
» Can then pick up loaded value by P —
. _QSslE = “rbx
forwarding from memory stage W_valE = 10
M

M_dstM = $rax
m_valM « M[128] =

.

D

valA « W _valE =10
valB ¢ m valM =3
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Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

r0
r3
r4
r/

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]
r3 + ro
r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

J;'"3+r6
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Out-of-order Execution

e Compiler could do this, but has limitations

e Generally done in hardware

rO

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[x0]

r4‘\\r3 + ro6

r’/

r5 + ril

'

r0
r3
r’/

r4

rl + r2
MEM[x0]
r5 4+ ril

£3 + ro6
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Out-of-order Execution

r0O = rl + r2
r3 = MEM[rO]
rd = r3 + r6
rée = rb5 + ril
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Out-of-order Execution

r0
r3
r4
r6

rl + r2
MEM[rO]
r3 + r6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rQ]
r5 + ril

= r3 + r6
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Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

r(
r3
r6

r4

rl + r2
MEM[rQ]
r5 + ril

= r3 + r6
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Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

rd4 =

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

rl + r2
MEM[rO]
r5 + rl

r3 4+ ro
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Out-of-order Execution

r0
r3
r4
r6

r(
r3
r4

rl + r2
MEM[rO]
r3 + r6
r5 + ril

rl + r2
MEM[rO]
r3 4+ ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3

rd4 =

r4

rl + r2
MEM[rO]
r5 + ril

= r3 + r6

rl + r2
MEM[rO]
r5 + rl

r3 4+ ro

“Tomasolu Algorithm” is the algorithm that is most

widely implemented in modern hardware to get out-of-

order execution right.
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