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Announcements
• Programming assignment 3 is out


• Details: https://www.cs.rochester.edu/courses/252/spring2022/labs/
assignment3.html 

• Due on March 3, 11:59 PM 
• You (may still) have 3 slip days

Today
Due

Mid-term

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
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Announcements
• Grades for Lab 2 are posted.


• Programming assignment 3 is in x86 assembly language. Seek help 
from TAs.


• TAs are best positioned to answer your questions about 
programming assignments!!!


• Programming assignments do NOT repeat the lecture materials. They 
ask you to synthesize what you have learned from the lectures and 
work out something new.


• Mid-term exam: March 3; online. 
• Past exam & Problem set: https://www.cs.rochester.edu/courses/

252/spring2022/handouts.html

• Exam will be electronic using Gradescope.

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
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• Open book test: any sort of paper-based product, e.g., book, 
notes, magazine, old tests. 

• Exams are designed to test your ability to apply what you have 
learned and not your memory (though a good memory could help). 

• Nothing electronic (including laptop, cell phone, calculator, 
etc) other than the computer you use to take the exam. 

• Nothing biological, including your roommate, husband, wife, 
your hamster, another professor, etc. 

• “I don’t know” gets15% partial credit. Must erase everything else.
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Control Dependency
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• Definition: Outcome of instruction A determines whether or not 
instruction B should be executed or not. 

• Jump instruction example below: 
• jne L1 determines whether irmovq $1, %rax should be 

executed 
• But jne doesn’t know its outcome until after its Execute stage

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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Resolving Control Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea 

• Delay slot: insert instructions that do not depend on the effect 
of the preceding instruction. These instructions will execute 
even if the preceding branch is taken — old RISC approach 

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops) 
• Branch Prediction 
• Return Address Stack

!6
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Hardware Generated Nops (Bubble and Stalling)
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• Stall: the pipeline register shouldn’t be written 
• Bubble: signals correspond to a nop 
• Why is it good for the hardware to do so anyways?
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How are Stall and Bubble Implemented in Hardware?
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Branch Prediction
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target
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Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of 
the jump direction
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If prediction is correct: pipeline moves forward without stalling

Also takes a guess of 
the jump direction
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Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of 
the jump direction
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Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling 
If mispredicted: kill mis-executed instructions, start from the correct target 

Static Prediction

• Always Taken 
• Always Not-taken 

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

�10
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Static Prediction
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Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly 

not taken because corner cases are rare. 
• People use jumps to implement loops. These branches are mostly 

taken because a loop takes multiple iterations.
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   cmpq    %rsi,%rdi 
   jle     .corner_case
   <do_A> 
.corner_case: 
   <do_B> 
   ret
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taken because a loop takes multiple iterations.
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     <before> 
.L1: <body> 
     cmpq B, A 
     jl .L1 
     <after>

   cmpq    %rsi,%rdi 
   jle     .corner_case
   <do_A> 
.corner_case: 
   <do_B> 
   ret
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     <before> 
.L1: <body> 
     cmpq B, A 
     jl .L1 
     <after>

   cmpq    %rsi,%rdi 
   jle     .corner_case
   <do_A> 
.corner_case: 
   <do_B> 
   ret

Static Prediction
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Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly 

not taken because corner cases are rare. 
• People use jumps to implement loops. These branches are mostly 

taken because a loop takes multiple iterations.
Strategy:


• Forward jumps (i.e., if-else): always predict not-taken 
• Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken
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Static Prediction
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Knowing branch prediction strategy helps us write faster code

• Any difference between the following two code snippets? 
• What if you know that hardware uses the always non-taken 

branch prediction?

if (cond) { 
  do_A() 
} else { 
  do_B() 
}

if (!cond) { 
  do_B() 
} else { 
  do_A() 
}
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Dynamic Prediction
• Simplest idea:


• If last time taken, predict taken; if last time not-taken, predict 
not-taken 

• Called 1-bit branch predictor 
• Works nicely for loops

!13
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• Called 1-bit branch predictor 
• Works nicely for loops

!13

for (i=0; i <5; i++) {…}
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Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N
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Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict 
• Might be too quick. Thus 2-bit branch prediction: we have to 

mispredict twice in a row before changing our mind

!14
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More Advanced Dynamic Prediction
• Look for past histories across instructions 
• Branches are often correlated


• Direction of one branch determines another

!15

x = 0 
if (cond1) x = 3 
if (cond2) y = 19 
if (x <= 0) z = 13

cond1 branch not-
taken means (x <=0) 
branch taken
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What Happens If We Mispredict?

�16

Cancel instructions when mispredicted

• Assuming we detect branch not-taken in execute stage 
• On following cycle, replace instructions in execute and 

decode by bubbles 
• No side effects have occurred yet
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0x000:    irmovq Stack,%rsp  # Intialize stack pointer 
0x00a:    call p             # Procedure call 
0x013:    irmovq $5,%rsi     # Return point 
0x01d:    halt 
0x020: .pos 0x20 
0x020: p: irmovq $-1,%rdi    # procedure 
0x02a:    ret 
0x02b:    irmovq $1,%rax     # Should not be executed 
0x035:    irmovq $2,%rcx     # Should not be executed 
0x03f:    irmovq $3,%rdx     # Should not be executed 
0x049:    irmovq $4,%rbx     # Should not be executed 
0x100: .pos 0x100 
0x100: Stack:                # Stack: Stack pointer

Return Instruction

�17
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Stalling for Return
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0x026:    ret F D E M
Wnop F D E M

W

nop F D E M W
nop F D E M W

0x013:    irmovq $5,%rsi # Return F D E M WF D E M W

■ As ret passes through pipeline, stall at fetch stage
● While in decode, execute, and memory stage

■ Inject bubble into decode stage
■ Release stall when reach write-back stage
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Return Address Stack (RAS)

�19

• Stalling for return is silly since we know where exactly we need 
to jump to, except the jump target is retrieved later in the 
memory stage.


• Can we get that sooner? Where should we get it?
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Return Address Stack (RAS)
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Branch Predictor

A hardware stack; 
different from the 
stack in memory.
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Today: Making the Pipeline Really Work
• Control Dependencies


• Inserting Nops 
• Stalling 
• Delay Slots 
• Branch Prediction 

• Data Dependencies

• Inserting Nops 
• Stalling 
• Out-of-order execution

�21
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Data Dependencies

�22

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx
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Data Dependencies

• Result from one instruction used as operand for another 
• Read-after-write (RAW) dependency 

• Very common in actual programs 
• Must make sure our pipeline handles these properly 

• Get correct results 
• Minimize performance impact

�22

1    irmovq $50,  %rax

2    addq   %rax, %rbx

3    mrmovq 100(%rbx),  %rdx
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A Subtle Data Dependency
• Jump instruction example below: 

• jne L1 determines whether irmovq $1, %rax should be executed 
• But jne doesn’t know its outcome until after its Execute stage. 

Why?

  nop
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    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

  nop
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A Subtle Data Dependency
• Jump instruction example below: 

• jne L1 determines whether irmovq $1, %rax should be executed 
• But jne doesn’t know its outcome until after its Execute stage. 

Why?
• There is a data dependency between xorg and jne. The “data” is the 

status flags.
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Data Dependencies in Single-Cycle Machines

In Single-Cycle Implementation:

• Each operation starts only after the previous operation finishes. 

Dependency always satisfied.

�24

Clock

Combinational 
logic
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Time

OP1
OP2
OP3
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Data Dependencies in Pipeline Machines

Data Hazards happen when: 
• Result does not feed back around in time for next operation

�25
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Data Dependencies: No Nop

�26

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Remember registers get 
updated in the Write-back stage
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Data Dependencies: No Nop
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0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

addq reads wrong %rdx and %rax

Remember registers get 
updated in the Write-back stage
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Data Dependencies: 1 Nop
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0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M
W0x00a: irmovq $3,%rax F D E M

W

0x014: nop F D E M WF D E M W
0x015: addq %rdx,%rax F D E M WF D E M W
0x017: halt F D E M WF D E M W

addq still reads wrong %rdx and %rax
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Data Dependencies: 2 Nop’s

�28

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

addq reads the correct %rdx, 
but %rax still wrong
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Data Dependencies: 3 Nop’s

�29

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx 
and %rax
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Resolving Data Dependencies
• Software Mechanisms


• Adding NOPs: requires compiler to insert nops, which also take 
memory space — not a good idea 

• Hardware mechanisms

• Stalling 
• Forwarding 
• Out-of-order execution

!30
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Hardware Generated Nops (Bubble and Stalling)

�31
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Hardware Generated Nops (Bubble and Stalling)
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Detecting Stall Condition

�32

• Using a “scoreboard”. Each register has a bit. 
• Every instruction that writes to a register sets the bit. 
• Every instruction that reads a register would have to check the bit first. 

• If the bit is set, then generate a bubble 
• Otherwise, free to go!!
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Detecting Stall Condition

�33

0x000: irmovq $10,%rdx F D E M W
0x00a: irmovq  $3,%rax F D E M W
       bubble

F

E M W
       bubble

D

E M W

0x014: addq %rdx,%rax D D E M W
0x016: halt F D E M WF F

D
F

E M W       bubble

Cycle 4
•
•
•

W
W_dstE = %rax

D
srcA = %rdx 
srcB = %rax

•
•
•

M
M_dstE = %rax

D
srcA = %rdx 
srcB = %rax

E
e_dstE = %rax

D
srcA = %rdx 
srcB = %rax

Cycle 5

Cycle 6
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Data Forwarding
Naïve Pipeline

• Register isn’t written until completion of write-back stage 
• Source operands read from register file in decode stage 
• The decode stage can’t start until the write-back stage finishes 

Observation

• Value generated in execute or memory stage 

Trick

• Pass value directly from generating instruction to decode stage 
• Needs to be available at end of decode stage

�34
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Data Forwarding Example

•  irmovq writes %rax to the register file at the end of the write-back 
stage 

• But the value of %rax is already available at the beginning of the write-
back stage 

• Forward %rax to the decode stage of addq.

�35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10
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Data Forwarding Example

•  irmovq writes %rax to the register file at the end of the write-back 
stage 

• But the value of %rax is already available at the beginning of the write-
back stage 

• Forward %rax to the decode stage of addq.

�35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10
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Data Forwarding Example #2

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Data Forwarding Example #2

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Data Forwarding Example #2

Register %rdx 
• Forward from the memory stage 

Register %rax 
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq  $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt
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Hardware Design

�37
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Limitation of Forwarding

�38

Load-use dependency

• Value needed by end of decode 

stage in cycle 7 
• Value read from memory in 

memory stage of cycle 8
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Avoiding Load/Use Hazard

�39

• Stall using instruction for one cycle 
• Can then pick up loaded value by 

forwarding from memory stage
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Out-of-order Execution

!40

r0 = r1 + r2 
r3 = MEM[r0] 
r4 = r3 + r6 
r7 = r5 + r1 

…

Long-latency instruction. 
Forces the pipeline to stall.

r0 = r1 + r2 
r3 = MEM[r0] 
r7 = r5 + r1 

… 
r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware
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Out-of-order Execution

!41

r0 = r1 + r2 
r3 = MEM[r0] 
r4 = r3 + r6 
r6 = r5 + r1 

…

r0 = r1 + r2 
r3 = MEM[r0] 
r6 = r5 + r1 

… 
r4 = r3 + r6

Is this correct?

r0 = r1 + r2 
r3 = MEM[r0] 
r4 = r3 + r6 
r4 = r5 + r1 

…

r0 = r1 + r2 
r3 = MEM[r0] 
r4 = r5 + r1 

… 
r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most 
widely implemented in modern hardware to get out-of-

order execution right.


