
CSC 252: Computer Organization 
 Spring 2022: Lecture 14 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcements
• Programming assignment 3 is out

• Details: https://www.cs.rochester.edu/courses/252/spring2022/labs/
assignment3.html

• Due on March 3, 11:59 PM
• You (may still) have 3 slip days

Today
Due

Mid-term

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment3.html

Carnegie Mellon

!3

Announcements
• Grades for Lab 2 are posted.

• Programming assignment 3 is in x86 assembly language. Seek help
from TAs.

• TAs are best positioned to answer your questions about
programming assignments!!!

• Programming assignments do NOT repeat the lecture materials. They
ask you to synthesize what you have learned from the lectures and
work out something new.

• Mid-term exam: March 3; online.
• Past exam & Problem set: https://www.cs.rochester.edu/courses/

252/spring2022/handouts.html

• Exam will be electronic using Gradescope.

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html

Carnegie Mellon

Announcements

!4

Carnegie Mellon

Announcements

!4

• Open book test: any sort of paper-based product, e.g., book,
notes, magazine, old tests.

• Exams are designed to test your ability to apply what you have
learned and not your memory (though a good memory could help).

• Nothing electronic (including laptop, cell phone, calculator,
etc) other than the computer you use to take the exam.

• Nothing biological, including your roommate, husband, wife,
your hamster, another professor, etc.

• “I don’t know” gets15% partial credit. Must erase everything else.

Carnegie Mellon

 nop

!5

Control Dependency

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

• Definition: Outcome of instruction A determines whether or not
instruction B should be executed or not.

• Jump instruction example below:
• jne L1 determines whether irmovq $1, %rax should be

executed
• But jne doesn’t know its outcome until after its Execute stage

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Resolving Control Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

• Hardware mechanisms

• Stalling (Think of it as hardware automatically inserting nops)
• Branch Prediction
• Return Address Stack

!6

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

xorq

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

xorqjle

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

xorqjleStall

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

xorqjleStall (Bubble)
nop

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

xorqjle(Bubble)
nop

(Bubble)
nop

add

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

jle(Bubble)
nop

(Bubble)
nop

add

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

(Bubble)
nop

(Bubble)
nop

add

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

(Bubble)
nop

add

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

add

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�7

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

• Stall: the pipeline register shouldn’t be written
• Bubble: signals correspond to a nop
• Why is it good for the hardware to do so anyways?

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Rising
clock
Rising
clock! ! Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Rising
clock
Rising
clock! ! Output = y

yy
Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

How are Stall and Bubble Implemented in Hardware?

�8

Rising
clock
Rising
clock! ! Output = y

yy

Rising
clock
Rising
clock! ! Output = x

xx

n
o
p

Rising
clock
Rising
clock! ! Output = nop

Output = xInput = y

stall
= 0

bubble
= 0

xxNormal

Output = xInput = y

stall
= 1

bubble
= 0

xxStall

xx
Output = xInput = y

stall
= 0

bubble
= 1

Bubble

Carnegie Mellon

!9

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?

Also takes a guess of
the jump direction

Carnegie Mellon

!9

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling

Also takes a guess of
the jump direction

Carnegie Mellon

!9

Branch Prediction

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

6

W
DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM WW

Idea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

Carnegie Mellon

Branch Prediction
Idea: instead of waiting, why not just guess the direction of jump?

If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

• Always Taken
• Always Not-taken

Dynamic Prediction

• Dynamically predict taken/not-taken for each specific jump instruction

�10

Carnegie Mellon

Static Prediction

!11

Carnegie Mellon

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Carnegie Mellon

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.

Mostly not taken

Mostly taken

Carnegie Mellon

 <before>
.L1: <body>
 cmpq B, A
 jl .L1
 <after>

 cmpq %rsi,%rdi
 jle .corner_case
 <do_A>
.corner_case:
 <do_B>
 ret

Static Prediction

!11

Observation (Assumption really): Two uses of jumps

• People use jumps to check corner cases. These branches are mostly

not taken because corner cases are rare.
• People use jumps to implement loops. These branches are mostly

taken because a loop takes multiple iterations.
Strategy:

• Forward jumps (i.e., if-else): always predict not-taken
• Backward jumps (i.e., loop): always predict taken

Mostly not taken

Mostly taken

Carnegie Mellon

Static Prediction

!12

Knowing branch prediction strategy helps us write faster code

• Any difference between the following two code snippets?
• What if you know that hardware uses the always non-taken

branch prediction?

if (cond) {
 do_A()
} else {
 do_B()
}

if (!cond) {
 do_B()
} else {
 do_A()
}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!13

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!13

for (i=0; i <5; i++) {…}

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!13

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• Simplest idea:

• If last time taken, predict taken; if last time not-taken, predict
not-taken

• Called 1-bit branch predictor
• Works nicely for loops

!13

for (i=0; i <5; i++) {…}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!14

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!14

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!14

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!14

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

Dynamic Prediction
• With 1-bit prediction, we change our mind instantly if mispredict
• Might be too quick. Thus 2-bit branch prediction: we have to

mispredict twice in a row before changing our mind

!14

for (i=0; i <5; i++) {…}

Predict with 1-bit N T T T T

Actual Outcome T T T T N

Predict with 2-bit N N T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

N T T T T

T T T T N

T T T T T

Carnegie Mellon

More Advanced Dynamic Prediction
• Look for past histories across instructions
• Branches are often correlated

• Direction of one branch determines another

!15

x = 0
if (cond1) x = 3
if (cond2) y = 19
if (x <= 0) z = 13

cond1 branch not-
taken means (x <=0)
branch taken

Carnegie Mellon

What Happens If We Mispredict?

�16

Cancel instructions when mispredicted

• Assuming we detect branch not-taken in execute stage
• On following cycle, replace instructions in execute and

decode by bubbles
• No side effects have occurred yet

Carnegie Mellon

0x000: irmovq Stack,%rsp # Intialize stack pointer
0x00a: call p # Procedure call
0x013: irmovq $5,%rsi # Return point
0x01d: halt
0x020: .pos 0x20
0x020: p: irmovq $-1,%rdi # procedure
0x02a: ret
0x02b: irmovq $1,%rax # Should not be executed
0x035: irmovq $2,%rcx # Should not be executed
0x03f: irmovq $3,%rdx # Should not be executed
0x049: irmovq $4,%rbx # Should not be executed
0x100: .pos 0x100
0x100: Stack: # Stack: Stack pointer

Return Instruction

�17

Carnegie Mellon

Stalling for Return

�18

0x026: ret F D E M
Wnop F D E M

W

nop F D E M W
nop F D E M W

0x013: irmovq $5,%rsi # Return F D E M WF D E M W

■ As ret passes through pipeline, stall at fetch stage
● While in decode, execute, and memory stage

■ Inject bubble into decode stage
■ Release stall when reach write-back stage

Carnegie Mellon

Return Address Stack (RAS)

�19

• Stalling for return is silly since we know where exactly we need
to jump to, except the jump target is retrieved later in the
memory stage.

• Can we get that sooner? Where should we get it?

Carnegie Mellon

Return Address Stack (RAS)

�20

Branch Predictor

A hardware stack;
different from the
stack in memory.

Carnegie Mellon

Today: Making the Pipeline Really Work
• Control Dependencies

• Inserting Nops
• Stalling
• Delay Slots
• Branch Prediction

• Data Dependencies

• Inserting Nops
• Stalling
• Out-of-order execution

�21

Carnegie Mellon

Data Dependencies

�22

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

�22

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

�22

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

Data Dependencies

• Result from one instruction used as operand for another
• Read-after-write (RAW) dependency

• Very common in actual programs
• Must make sure our pipeline handles these properly

• Get correct results
• Minimize performance impact

�22

1 irmovq $50, %rax

2 addq %rax, %rbx

3 mrmovq 100(%rbx), %rdx

Carnegie Mellon

!23

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed
• But jne doesn’t know its outcome until after its Execute stage.

Why?

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

!23

A Subtle Data Dependency
• Jump instruction example below:

• jne L1 determines whether irmovq $1, %rax should be executed
• But jne doesn’t know its outcome until after its Execute stage.

Why?
• There is a data dependency between xorg and jne. The “data” is the

status flags.

 nop

1

F

2

D
F

3

E
D
F

4

M
E
D
F

5

M
W

E
D
FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

 nop

6

W
M
E
DD

7

W
M
EE

8

W
MM

9

WW
FF DD EE MM WW

FF DD EE MM

Carnegie Mellon

Data Dependencies in Single-Cycle Machines

In Single-Cycle Implementation:

• Each operation starts only after the previous operation finishes.

Dependency always satisfied.

�24

Clock

Combinational
logic

R
e
g

Time

OP1
OP2
OP3

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:
• Result does not feed back around in time for next operation

�25

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies in Pipeline Machines

Data Hazards happen when:
• Result does not feed back around in time for next operation

�25

R
e
g

Clock

Comb.
logic

A

R
e
g

Comb.
logic

B

R
e
g

Comb.
logic

C

Time

OP1
OP2
OP3

A B C
A B C

A B C
OP4 A B C

Carnegie Mellon

Data Dependencies: No Nop

�26

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: No Nop

�26

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

addq reads wrong %rdx and %rax

Remember registers get
updated in the Write-back stage

Carnegie Mellon

Data Dependencies: 1 Nop

�27

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M
W0x00a: irmovq $3,%rax F D E M

W

0x014: nop F D E M WF D E M W
0x015: addq %rdx,%rax F D E M WF D E M W
0x017: halt F D E M WF D E M W

addq still reads wrong %rdx and %rax

Carnegie Mellon

Data Dependencies: 2 Nop’s

�28

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

addq reads the correct %rdx,
but %rax still wrong

Carnegie Mellon

Data Dependencies: 3 Nop’s

�29

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: nop F D E M WF D E M W
0x017: addq %rdx,%rax F D E M WF D E M W

10 11

0x019: halt F D E M WF D E M W

addq reads the correct %rdx
and %rax

Carnegie Mellon

Resolving Data Dependencies
• Software Mechanisms

• Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

• Hardware mechanisms

• Stalling
• Forwarding
• Out-of-order execution

!30

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2rd R1 R2

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2rd R1 R2 rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2rd R1 R2

Stall

rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2rd R1 R2

StallStall

rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R1wr R2rd R1 R2
bubble
(nop)

StallStall

rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

wr R2rd R1 R2
bubble
(nop)

bubble
(nop)

StallStall

rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

rd R1 R2
bubble
(nop)

bubble
(nop)

StallStall

rd R3 R4
bubble
(nop)

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

rd R1 R2
bubble
(nop)rd R3 R4

bubble
(nop)

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

rd R1 R2 rd R3 R4
bubble
(nop)

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

rd R1 R2 rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

rd R3 R4

Carnegie Mellon

Hardware Generated Nops (Bubble and Stalling)

�31

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Fetch Decode Execute Memory Write
back

Carnegie Mellon

Detecting Stall Condition

�32

• Using a “scoreboard”. Each register has a bit.
• Every instruction that writes to a register sets the bit.
• Every instruction that reads a register would have to check the bit first.

• If the bit is set, then generate a bubble
• Otherwise, free to go!!

Carnegie Mellon

Detecting Stall Condition

�33

0x000: irmovq $10,%rdx F D E M W
0x00a: irmovq $3,%rax F D E M W
 bubble

F

E M W
 bubble

D

E M W

0x014: addq %rdx,%rax D D E M W
0x016: halt F D E M WF F

D
F

E M W bubble

Cycle 4
•
•
•

W
W_dstE = %rax

D
srcA = %rdx
srcB = %rax

•
•
•

M
M_dstE = %rax

D
srcA = %rdx
srcB = %rax

E
e_dstE = %rax

D
srcA = %rdx
srcB = %rax

Cycle 5

Cycle 6

Carnegie Mellon

Data Forwarding
Naïve Pipeline

• Register isn’t written until completion of write-back stage
• Source operands read from register file in decode stage
• The decode stage can’t start until the write-back stage finishes

Observation

• Value generated in execute or memory stage

Trick

• Pass value directly from generating instruction to decode stage
• Needs to be available at end of decode stage

�34

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

�35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example

• irmovq writes %rax to the register file at the end of the write-back
stage

• But the value of %rax is already available at the beginning of the write-
back stage

• Forward %rax to the decode stage of addq.

�35

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8 9

F D E M WF D E M W
0x00a: irmovq $3,%rax F D E M WF D E M W
0x014: nop F D E M WF D E M W
0x015: nop F D E M WF D E M W
0x016: addq %rdx,%rax F D E M WF D E M W
0x018: halt F D E M WF D E M W

10

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Data Forwarding Example #2

Register %rdx
• Forward from the memory stage

Register %rax
• Forward from the execute stage

�36

0x000: irmovq $10,%rdx

1 2 3 4 5 6 7 8

F D E M
W0x00a: irmovq $3,%rax F D E M

W

F D E M W0x014: addq %rdx,%rax

F D E M W0x016: halt

Carnegie Mellon

Hardware Design

�37

Carnegie Mellon

Limitation of Forwarding

�38

Load-use dependency

• Value needed by end of decode

stage in cycle 7
• Value read from memory in

memory stage of cycle 8

Carnegie Mellon

Avoiding Load/Use Hazard

�39

• Stall using instruction for one cycle
• Can then pick up loaded value by

forwarding from memory stage

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2
r3 = MEM[r0]
r7 = r5 + r1

…
r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

!40

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r7 = r5 + r1

…

Long-latency instruction.
Forces the pipeline to stall.

r0 = r1 + r2
r3 = MEM[r0]
r7 = r5 + r1

…
r4 = r3 + r6

• Compiler could do this, but has limitations

• Generally done in hardware

Carnegie Mellon

Out-of-order Execution

!41

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

!41

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

!41

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

Carnegie Mellon

Out-of-order Execution

!41

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r4 = r5 + r1

…
r4 = r3 + r6

Is this correct?

Carnegie Mellon

Out-of-order Execution

!41

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r6 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r6 = r5 + r1

…
r4 = r3 + r6

Is this correct?

r0 = r1 + r2
r3 = MEM[r0]
r4 = r3 + r6
r4 = r5 + r1

…

r0 = r1 + r2
r3 = MEM[r0]
r4 = r5 + r1

…
r4 = r3 + r6

Is this correct?

“Tomasolu Algorithm” is the algorithm that is most
widely implemented in modern hardware to get out-of-

order execution right.

