
CSC 252: Computer Organization 
 Spring 2022: Lecture 18 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/
252/spring2022/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 soon to be released later today.

• Due April 8.

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!3

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

!4

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:

!4

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

!4

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU

!4

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

!4

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!4

CPU
Registers

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space

!4

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.

!4

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Processes
• Definition: A process is an instance of a running

program.
• One of the most profound ideas in computer science
• Not the same as “program” or “processor”

• Process provides each program with two key
abstractions:
• “Owns” the CPU

• Each program seems to have exclusive use of the CPU
• Done by the OS kernel through “context switching”

• Private address space
• Each program seems to have exclusive use of main

memory.
• Provided by OS through “virtual memory”

!4

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing: The Illusion

• Computer runs many processes simultaneously

• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices

!5

CPU
Registers

Memory
Stack
Heap

Code
Data

CPU
Registers

Memory
Stack
Heap

Code
Data …

CPU
Registers

Memory
Stack
Heap

Code
Data

Carnegie Mellon

Multiprocessing Example

• Running program “top” on Unit/Linux

• System has 123 processes, 5 of which are active
• Identified by Process ID (PID)

!6

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!7

CPU
Registers

Stack
Heap

Code
Data

Saved
registers

Process 2
Stack
Heap

Code
Data

Saved
registers

Saved
registers

Process N
Stack
Heap

Code
Data

Context switch
managed by the OS.
Not controllable by
programmers.

Carnegie Mellon

Multiprocessing: The Multi-Core Case

• Multicore processors

• Multiple CPUs on single chip
• Share main memory (and some of the

caches)
• Each can execute a separate process

• Scheduling of processors onto
cores done by kernel

!8

CPU
Registers

Memory
Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU
Registers

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential

!9

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

!9

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C

!9

Process A Process B Process C

Time

Carnegie Mellon

Concurrent Processes
• Each process is a logical control flow.
• Two processes run concurrently (are concurrent) if their flows

overlap in time
• Otherwise, they are sequential
• Examples (running on single core):

• Concurrent: A & B, A & C
• Sequential: B & C

!9

Process A Process B Process C

Time

Carnegie Mellon

User View of Concurrent Processes
• Control flows for concurrent processes are physically disjoint in

time

• However, we can think of concurrent processes as running in
parallel with each other

!10

Time

Process A Process B Process C

Carnegie Mellon

Context Switching
• Processes are managed by a shared chunk of memory-resident

OS code called the kernel
• Important: the kernel is not a separate process, but rather runs as

part of some existing process.

• Control flow passes from one process to another via a context
switch

!11

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Today
• Processes and Signals: running multiple programs concurrently

• Processes
• Process Control
• Signals

!12

Carnegie Mellon

Obtaining Process IDs
•pid_t getpid(void)

• Returns PID of current process

•pid_t getppid(void)
• Returns PID of parent process

!13

Carnegie Mellon

Creating and Terminating Processes
From a programmer’s perspective, we can think of a process as
being in one of three states

• Running	

• Process is either executing, or waiting to be executed and will

eventually be scheduled (i.e., chosen to execute) by the kernel

• Stopped

• Process execution is suspended and will not be scheduled until

further notice (through something call signals)

• Terminated

• Process is stopped permanently

!14

Carnegie Mellon

Terminating Processes
• Process becomes terminated for one of three reasons:

• Receiving a signal whose default action is to terminate
• Returning from the main routine
• Calling the exit function

•void exit(int status)
• Terminates with an exit status of status
• Convention: normal return status is 0, nonzero on error
• Another way to explicitly set the exit status is to return an integer

value from the main routine

•exit is called once but never returns.

!15

Carnegie Mellon

Creating Processes
• Parent process creates a new running child process by calling
fork

•int fork(void)
• Returns 0 to the child process, child’s PID to parent process

• Child is almost identical to parent:

• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

• Child gets identical copies of the parent’s open file descriptors

• Child has a different PID than the parent

• fork is interesting (and often confusing) because  
it is called once but returns twice

!16

Carnegie Mellon

fork Example

!17

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

Carnegie Mellon

fork Example

!17

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice

Carnegie Mellon

fork Example

!17

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

Carnegie Mellon

fork Example

!17

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

Carnegie Mellon

fork Example

!17

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

linux> ./fork
parent: x=0
child : x=2

fork.c

• Call once, return twice
• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

• Shared open files
• stdout is the same in both

parent and child

Carnegie Mellon

Process Address Space

!18

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Process Address Space

!18

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

What Happens at fork()?

!19

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!19

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!19

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space

Carnegie Mellon

What Happens at fork()?

!19

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Carnegie Mellon

What Happens at fork()?

!19

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack
x = 1

Code Segment
int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) {
 /* Child */
 x++; // 2
 exit(0);
 }

 /* Parent */
 x--; // 0
 exit(0);
}

Child
Process

Program

Counter

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork
• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process
• Returns child’s PID to the parent process

!20

Carnegie Mellon

Process Graph Example

!21

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!22

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!22

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

!22

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

Carnegie Mellon

fork Example: Two consecutive forks

!23

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!23

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!23

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

!23

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!24

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!24

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!24

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

!24

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!25

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in children

!25

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!25

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

!25

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)

!26

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)

!26

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

•What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned

child will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

!26

Carnegie Mellon

Zombie Example

!27

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

!27

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

• ps shows child process
as “defunct” (i.e., a
zombie)

!27

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Zombie Example

• ps shows child process
as “defunct” (i.e., a
zombie)

• Killing parent allows
child to be reaped by
init

!27

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID = %d\n", getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n", getpid());
 while (1)
 ; /* Infinite loop */
 }
} forks.c

Carnegie Mellon

Non-terminating Child

!28

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

Non-terminating Child

!28

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

Non-terminating Child

• Child process still active even
though parent has terminated.
Can’t be reaped since it’s still
running!

• Must kill child explicitly, or else
will keep running indefinitely

!28

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

void fork8()
{
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1)
 ; /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",
 getpid());
 exit(0);
 }
} forks.c

Carnegie Mellon

wait: Synchronizing with Children

!29

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

wait: Synchronizing with Children

!29

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Carnegie Mellon

wait: Synchronizing with Children

!29

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Carnegie Mellon

wait: Synchronizing with Children

!29

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

•int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated
• If child_status != NULL, then the integer it points to will be set

to a value that indicates reason the child terminated and the exit
status:

• Checked using macros defined in wait.h
• WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

• See textbook for details

!30

