CSC 252: Computer Organization
Spring 2022: Lecture 2

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

 Make sure you can access CSUG machines!!!

* Programming assignment 1 will be posted today.
| will send an announcement when it’s out.
e [tisin C language. Seek help from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

Previously in 252...

Problem

Algorithm

Program

Instruction Set
Architecture (ISA)

Microarchitecture

Circuit

Previously in 252...

Problem

Algorithm

Program

ISA is the contract
between software and
hardware.

Architecture (ISA)

Microarchitecture

Circuit

Previously in 252...

Problem

Algorithm

Service provider Landlord

Service receiver YOU
> and
Contract Lease

Contract’s language Natural language (e.g.,
English)

Circuit

Previously in 252...

Problem

Algorithm

Service provider

Service receiver

Contract
Contract’

s language

Landlord
YOU
Lease

Natural language (e.g.,
English)

Circuit

Hardware
ot
3> and

Software
ISA

Assembly programming
language

Previously in 252...

Problem

e How is a human-
readable program
translated to a
representation that
computers can Program
understand?

Instruction Set

Architecture (ISA)

Algorithm

ISA is the contract
between software and
hardware.

Microarchitecture

Circuit

Previously in 252...

Problem
e How is a human- :
readable program Algorithm
translated to a
representation that
Program

computers can
understand?

ISA is the contract
between software and
hardware.

Architecture (ISA)

e How does a
modern computer
execute that
program??

Microarchitecture

Circuit

Previously in 252...

C Program Assembly program

void add() { | movl $1, -4(%rbp)
inta=1; recmem el movl $2, -8(%rbp)
intb =2; movl -4(%rbp), Y%eax

intc=a+b: addl -8(%rbp), %eax

}

Previously in 252...

Assembly program Executable Binary
movl $1, -4(%rbp) | 00011001
movl $2, -8(%rbp) 01101010
movl -4(%rbp), Y%eax 11010101

addl -8(%rbp), %eax 01110001

Previously in 252...

Assembly program Executable Binary
movl $1, -4(%rbp) | 00011001
movl $2, -8(%rbp) 01101010
movl -4(%rbp), Y%eax 11010101
addl -8(%rbp), %eax 01110001

e What’s the difference between an assembly program and
an executable binary?

* They refer to the same thing — a list of instructions that the software
asks the hardware to perform

* They are just different representations
* |nstruction = Operator + Operand(s)

Previously in 252...

Assembly program Executable Binary
| $1, -4(%rbp) | 00011001
| $2, -8(%rbp) G 01101010
-4(%rp), Joeax 11010101
_|8(verbp), Foeax 01110001

e What’s the difference between an assembly program and
an executable binary?

* They refer to the same thing — a list of instructions that the software
asks the hardware to perform

* They are just different representations
* |nstruction = Operator + Operand(s)

Previously in 252...

Assembly program Executable Binary
movl $1, -4(%rbp) | 00011007
movl |$2, -8(%rbp) 01101010
movl | -4(%rbp), %eax| 11010101
addl [-8(%rbp), %eax 01110001

e What’s the difference between an assembly program and
an executable binary?

* They refer to the same thing — a list of instructions that the software
asks the hardware to perform

* They are just different representations
* |nstruction = Operator + Operand(s)

Today: Representing Information in Binary

 Why Binary (bits)?

Everything in Computers is bits

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits
* Hardware then interprets the bits

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits

* Hardware then interprets the bits

* Why bits? Electronic Implementation

Everything in Computers is bits

* Each bitis 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits

* Hardware then interprets the bits

* Why bits? Electronic Implementation

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits
* Hardware then interprets the bits

* Why bits? Electronic Implementation
» Use high voltage to represent 1
* Use low voltage to represent O

1 > <—O—>
1.1V —

0.9V — / \
0.2V —

0.0V —

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits
* Hardware then interprets the bits

* Why bits? Electronic Implementation
» Use high voltage to represent 1
* Use low voltage to represent O

< 0 > < 1 > «— 0
1.1V —
M
0.9V —
Low voltage / \

0.0V —

Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits
* Hardware then interprets the bits

* Why bits? Electronic Implementation
» Use high voltage to represent 1
* Use low voltage to represent O

< 0 > < 1 > «— 0
1.1V —
0.9V — T N
Low voltage / High voltage \
0.2V —/W \’\f

0.0V —

Why Bits?

Why Bits?

Processors are made of transistors, which are Metal Oxide
Semiconductor (MOS)

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)
e two types: n-type and p-type

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)
e two types: n-type and p-type

n-type (NMOS)

Terminal #2 must be
connected to GND (0V).

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)

e two types: n-type and p-type
n-type (NMOS)

* when Gate has high voltage,

short circuit between #1 and #2
(switch closed)

Terminal #2 must be
connected to GND (0V).

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)

e two types: n-type and p-type
n-type (NMOS)

* when Gate has high voltage,

short circuit between #1 and #2
(switch closed)

Terminal #2 must be
connected to GND (0V).

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)
e two types: n-type and p-type

n-type (NMOS)
* when Gate has high voltage,
short circuit between #1 and #2
(switch closed)
* when Gate has low voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Terminal #2 must be
connected to GND (0V).

Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)
e two types: n-type and p-type

n-type (NMOS)
* when Gate has high voltage,
short circuit between #1 and #2
(switch closed)
* when Gate has low voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

#1

Gate =0 (

#2

Terminal #2 must be
connected to GND (0V).

Why Bits?

p-type is complementary to n-type (PMOS)
* when Gate has high voltage,

open circuit between #1 and #2 A
(switch open) l

« when Gate has low voltage,
short circuit between #1 and #2 (
(switch closed) #9

Gate = 1

Gate =0

Terminal #1 must be
connected to +1.2V

10

Inverter

=

In —

_|

- +1.2V

— Out

= +0.0V

11

Inverter

In

11

Inverter

In

11

Inverter 19V

- +1.2V o
. | P-type
_q Out=1
. IN-
In 4 t+— Out A

= +0.0V

11

Inverter 19V

- +1.2V s
. | P-type

Qut=1

N
In —¢ — Out

l

= +0.0V

In=1— ¢+— Out=0

11

Inverter

=

- +1.2V

In — — Out

In

‘

= +0.0V

Out

+1.2V

P-type

Qut=1

11

Inverter 19V

- +1.2V s
. | P-type

Qut=1

=

In — — Out

l

<~ +0.0V .
—._, P-type
in | out In=1— ¢+— Out=0
0 1 A—[\;}O—K — | : N-type
1 0
+0.0V

11

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

High voltage

o
<

12

Store/Access Data

1.1V
0.9V

Low voltage High voltage
0.2V

0.0V

2y

12

Store/Access Data

1.1V
0.9V

Low voltage High voltage
0.2V

0.0V

AY

12

Store/Access Data

1.1V
0.9V

Low voltage High voltage
0.2V

0.0V

AY

12

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”

High voltage

11500
<

12

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”

High voltage

row select

bitline

bitline

12

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”

High voltage

row select

bitline

bitline

12

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”

High voltage

row select

= bijtline

O Ditline

12

Store/Access Data

1.1V

0.9V
Low voltage

0.2V
0.0V

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”
¢ / transistors for storage

High voltage

row select

= bijtline

© bitline

12

Store/Access Data

< 0 >
1.1V —
0.9V —
Low voltage
02V
0.0V —

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”
¢ / transistors for storage
e ? transistors for access

/‘/\f—\/\
High voltage \

= bjtline

» | 0o—

row select

O pitline

12

Store/Access Data

< 0 >
1.1V —
0.9V —
Low voltage
02V
0.0V —

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”
¢ / transistors for storage
e 2 transistors for access
e A“CT” cell

/‘/\f—\/\
High voltage \

= bjtline

» | 0o—

row select

O pitline

12

Transistors

e Computers are made of transistors

* Transistors have become smaller over the years
e Not so much anymore...

13

Transistors

e Computers are made of transistors

* Transistors have become smaller over the years
e Not so much anymore...

Six-core CPU

BA-GirUesign

4.3 billion transistors

D < Lotk
Amgcastrate s
ol Ak i AR AT '7”'";::%!::&-‘

w";'t““» LR YL T B L

13

Why Limit Ourselves Only to Binary?

* \oltage is continuous. Why interpret it only as Os and 1s?

0 1 2 1 0]
pla >
1.1V —
/‘/\,\/\
0.9V — / \

0.0V —

14

Why Limit Ourselves Only to Binary?

* \/oltage is continuous. Why interpret it only as Os and 1s?
* Answer: Noise

1.1V —
0.9V — / \
0.2V —

0.0V —

14

Why Limit Ourselves Only to Binary?

e But, there are applications that can tolerate noise

15

Why Limit Ourselves Only to Binary?

e But, there are applications that can tolerate noise
e Classic Example: Camera Sensor
* Photoelectric Effect

v
S,

@@@@,@@
% @ o o

15

Why Limit Ourselves Only to Binary?

e But, there are applications that can tolerate noise
e Classic Example: Camera Sensor
* Photoelectric Effect

/S

/

@ @ @ @ @ @ 0 20 ”,”“:I?A,“_'_f_‘:."",li_mi;: —
°c @ 00 RNetha nd e

11073 Electrons!

15

Why Limit Ourselves Only to Binary?

e But, there are applications that can tolerate noise
e Classic Example: Camera Sensor
* Photoelectric Effect

F a0

&)

11073 Electron

S
3«
a1
o
-
x
'." I/ "\. 7 A\) 0 20 10 0 80 100
v)
.\l_l \“'/ __/ Hiumination evel (arbitrany)
\

(Eppierson, EM. of al. Elvetro-optival charactenzanion
of the Telaronite TRS ., G Bng., 20, 19%YY)

15

Why Limit Ourselves Only to Binary?

e But, there are applications that can tolerate noise
e Classic Example: Camera Sensor
* Photoelectric Effect

15

Binary Notation

Binary Notation

e Base 2 Number Representation (Binary)

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=1*100+ 2101 =21

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position
® 101712=1"20+ 1721 + 022 + 1°23= 1110

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position
® 101712=1"20+ 1721 + 022 + 1°23= 1110
e bsbobi1bo = b9*20 + b1*21 + p2*22 + p3*23

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position

® 10112=120+ 12"+ 0722+ 1°23=1110
® bsbobi1bo= b9*20+ b1727 4+ b2*22 + p3723
e Binary Arithmetic

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position
® 101712=1"20+ 1721 + 022 + 1°23= 1110
e bsbobi1bo = b9*20 + b1*21 + p2*22 + p3*23
e Binary Arithmetic

Decimal

0 NO O &~WN =+ O

_L_L_L_L_L_L©
OO OGO N O

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position
® 101712=1"20+ 1721 + 022 + 1°23= 1110
e bsbobi1bo = b9*20 + b1*21 + p2*22 + p3*23
e Binary Arithmetic

0110
+ 0101

1011

Decimal

0 NO O &~WN =+ O

_L_L_L_L_L_L©
OO OGO N O

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16

Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)

© 2710=1"100+ 2*107= 21
e \WWeighted Positional Notation

* Each bit has a weight depending on its position
e 10112=1"20+ 121+ 022+ 1"23= 11710
® bsbob1bo= b0*20 + b1*27 + b2*22 + p3*23

e Binary Arithmetic

0110
+ 0101

1011

11

Decimal

0 NO O &~WN =+ O

_L_L_L_L_L_L©
OO OGO N O

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

16

Hexdecimal (Hex) Notation

- Base 16 Number Representation
- Use characters ‘0’ to ‘9" and ‘A’ to ‘F’
- Four bits per Hex digit
* 111111102 = FE16
- Write FA1D37B16 in C as
- OxFA1D37B
e Oxfald37b

Hex Decimal

TMOOTIT>O©O~NONWN—=O

0

0 N O Or & WO N —

-4 4 4 1 1 1
OO ~0LO N O

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

17

Bit, Byte, Word

e Byte = 8 bits
- Binary 000000002 to 111111112, Decimal: O10 to 25510; Hex: 0016 to FF16
- Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

[b11011

LSb

18

Bit, Byte, Word

e Byte = 8 bits
- Binary 000000002 to 111111112, Decimal: O10 to 25510; Hex: 0016 to FF16
- Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

[b11011

 Word = 4 Bytes (32-bit machine) / 8 Bytes (64-bit machine)
- Least Significant Byte (LSB) vs. Most Significant Byte (MSB)

LSb

18

Today: Representing Information in Binary

e Bit-level manipulations

19

Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

{[
In — Out
N

20

Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

ﬂ[
In — Out
N

Or
- A|B =1 when either A=1 or B=1

—A

— OO0

20

Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

L
In — Out
N

Or
- A|B =1 when either A=1 or B=1

And
- A&B = 1 when both A=1 and B=1

- O

— OO0

_.LOQo

o OO

- O -

20

Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

In — Qut

Or
- A|B =1 when either A=1 or B=1

And
- A&B = 1 when both A=1 and B=1

Exclusive-Or (Xor)

= AMB = 1 when either A=1 or B=1,
but not both

- O

— O

4

_.LOQo

>

o OO

- O

- O

— OO0

O | -

20

NOR (OR + NOT)

- O O O

© == O =«

O O ™ <

21

A=0

NOR (OR + NOT)

B=1-

|0 © ™

21

Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101

~ 01010101

22

Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101

~ 01010101

01000001

22

Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101

~ 01010101

01000001 01111101

22

Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101

~ 01010101

01000001 01111101 00111100

22

Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101

~ 01010101

01000001 01111101 00111100

10101010

22

Bit-Level Operations in C

e Operations &, |, ~, A Available in C

IH

- Apply to any “integral” data type
- long, int, short, char, unsigned

- View arguments as bit vectors

- Arguments applied bit-wise

e Examples (Char data type)
~0x41 = OxBE
- ~01000001; - 10111110:
~Qx00 — OxFF
- ~00000000; - 11111111,
0x69 & 0x55 — 0x41
- 01101001, & 01010101, = 01000001;
Ox69 | 0x55 = Ox7D
- 01101001, | 01010101, = 01111101;

23

Aside: Logic Operations in C

e Contrast to Logical Operators
- &&, |1, !
- View 0 as “False”
- Anything nonzero as “True”
- AlwaysreturnOor1
- Early termination (e.g., 0 && 1 && 1)

* Examples (char data type)
10x41 - 0x00
10x00 — 0x01
110x41 - Ox01

0x69 && Ox55 = 0x01
0xe9 || @Ox55 = 0x01
p & *p (avoids null pointer access)

24

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

Log. >> 2

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010

Log. >> 2

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x| 01100010
<< 3 00010000

Log. >> 2 011000

Arith. >> 2

Argument x| 10100010
<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

011000

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

Arith. >> 2

Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

101000

Arith. >> 2

Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2

101000

Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2

11101000

Today: Representing Information in Binary

* I[ntegers
- Representation: unsigned and signed

26

Representing Numbers in Binary

 Different types of number
* Integer (Negative and Non-negative)
* Fractions
* |rrationals

]
-7 6 -5 -4 -3 -2-101 2 3 4 5 6 7..

27

Representing Numbers in Binary

 Different types of number
* Integer (Negative and Non-negative)
* Fractions
* |rrationals

—+H e
-7 6 -5 -4 -3 -2-101 2 3 4 5 6 7..

27

Encoding Negative Numbers

Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

28

Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

28

Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

28

Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

1
0 1 2 3 4 5 6 7

000 gy 010 914100 451 110 444

28

Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

11—
-3 -2 -1 0 1 2 3

110 000 010
111 101100 001 011

28

Sign-Magnitude Implications

e Bits have different semantics
e [WO zeros...
e Normal arithmetic doesn’t work
* Make hardware design harder

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
100
101
110
111

29

Sign-Magnitude Implications

e Bits have different semantics Signed Binary

* Two zeros... e

| | | 0 000

 Normal arithmetic doesn’t work] 001

» Make hardware design harder g 8]?

0 100

. 101

010 2 110

+) 101 -3 111

111

29

Sign-Magnitude Implications

¢ Bits have different semantics

e TWO Zeros...

e Normal arithmetic doesn’t work
* Make hardware design harder

010
+) 101

111

+) -1

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
100
101
110
111

29

Sign-Magnitude Implications

e Bits have different semantics
e [WO zeros...
e Normal arithmetic doesn’t work
* Make hardware design harder

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
100
101
110
111

29

