CSC 252: Computer Organization Spring 2022: Lecture 2

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Announcement

- Make sure you can access CSUG machines!!!
- Programming assignment 1 will be posted today.
 - I will send an announcement when it's out.
 - It is in C language. Seek help from TAs.
 - TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Problem Algorithm Program Instruction Set Architecture (ISA) Microarchitecture Circuit

Problem

Algorithm

Program

Instruction Set Architecture (ISA) ISA is the contract between software and hardware.

Microarchitecture

Circuit

Problem

Algorithm

	Renting	
Service provider	Landlord	
Service receiver	YOU	
Contract	Lease	
Contract's language	Natural language (e.g., English)	

Circuit

t and

Problem

Algorithm

	Renting	Computing	ot e and
Service provider	Landlord	Hardware	
Service receiver	YOU	Software	
Contract	Lease	ISA	Janu
Contract's language	Natural language (e.g., English)	Assembly programming language	

Circuit

 How is a humanreadable program translated to a representation that computers can understand?

Algorithm

Program

Instruction Set Architecture (ISA)

Microarchitecture

Circuit

ISA is the contract between software and hardware.

- How is a humanreadable program translated to a representation that computers can understand?
- How does a modern computer execute that program?

ISA is the contract between software and hardware.

C Program

```
void add() {
  int a = 1;
  int b = 2;
  int c = a + b;
}
```

Assembly program

```
movl $1, -4(%rbp)
movl $2, -8(%rbp)
movl -4(%rbp), %eax
addl -8(%rbp), %eax
```

Assembly program

movl \$1, -4(%rbp)

movl \$2, -8(%rbp)

movl -4(%rbp), %eax

addl -8(%rbp), %eax

Executable Binary

00011001 ... 01101010 ... 11010101 ...

01110001

Assembly program

Executable Binary

```
      movl
      $1, -4(%rbp)
      00011001
      ...

      movl
      $2, -8(%rbp)
      01101010
      ...

      movl
      -4(%rbp), %eax
      11010101
      ...

      addl
      -8(%rbp), %eax
      01110001
      ...
```

- What's the difference between an assembly program and an executable binary?
 - They refer to the same thing a list of instructions that the software asks the hardware to perform
 - They are just different representations
- Instruction = Operator + Operand(s)

Assembly program

Executable Binary

movl movl movl addl

```
$1, -4(%rbp)
$2, -8(%rbp)
-4(%rbp), %eax
-8(%rbp), %eax
```


00011001 ... 01101010 ... 11010101 ... 01110001 ...

- What's the difference between an assembly program and an executable binary?
 - They refer to the same thing a list of instructions that the software asks the hardware to perform
 - They are just different representations
- Instruction = Operator + Operand(s)

Assembly program

Executable Binary

movl \$1, -4(%rbp) movl \$2, -8(%rbp) movl -4(%rbp), %eax addl -8(%rbp), %eax

00011001 ... 01101010 ... 11010101 ... 01110001 ...

- What's the difference between an assembly program and an executable binary?
 - They refer to the same thing a list of instructions that the software asks the hardware to perform
 - They are just different representations
- Instruction = Operator + Operand(s)

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

• Each bit is 0 or 1. Bits are how programs talk to the hardware

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits
- Why bits? Electronic Implementation

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits
- Why bits? Electronic Implementation

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits
- Why bits? Electronic Implementation
 - Use high voltage to represent 1
 - Use low voltage to represent 0

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits
- Why bits? Electronic Implementation
 - Use high voltage to represent 1
 - Use low voltage to represent 0

- Each bit is 0 or 1. Bits are how programs talk to the hardware
- Programs encode instructions in bits
- Hardware then interprets the bits
- Why bits? Electronic Implementation
 - Use high voltage to represent 1
 - Use low voltage to represent 0

Processors are made of transistors, which are Metal Oxide Semiconductor (MOS)

Processors are made of transistors, which are Metal Oxide Semiconductor (MOS)

• two types: n-type and p-type

Processors are made of transistors, which are Metal Oxide Semiconductor (MOS)

two types: n-type and p-type

n-type (NMOS)

Processors are made of transistors, which are Metal Oxide Semiconductor (MOS)

two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>high</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)

two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>high</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

Processors are made of transistors, which are Metal Oxide

#1

#2

GND

Semiconductor (MOS)

• two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>high</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

 when Gate has <u>low</u> voltage, open circuit between #1 and #2 (switch <u>open</u>)

Gate

Gate = 1

Processors are made of transistors, which are Metal Oxide

#1

#2

GND

Semiconductor (MOS)

two types: n-type and p-type

n-type (NMOS)

 when Gate has <u>high</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

 when Gate has <u>low</u> voltage, open circuit between #1 and #2 (switch <u>open</u>)

Gate

p-type is complementary to n-type (PMOS)

- when Gate has <u>high</u> voltage, open circuit between #1 and #2 (switch <u>open</u>)
- when Gate has <u>low</u> voltage, short circuit between #1 and #2 (switch <u>closed</u>)

Terminal #1 must be connected to +1.2V

Inverter

Inverter

In	Out
0	1
1	0

Inverter

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"
 - 4 transistors for storage

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"
 - 4 transistors for storage
 - 2 transistors for access

- Two cross coupled inverters store a single bit
 - Feedback path persists the value in the "cell"
 - 4 transistors for storage
 - 2 transistors for access
 - A "6T" cell

Transistors

- Computers are made of transistors
- Transistors have become smaller over the years
 - Not so much anymore...

Transistors

- Computers are made of transistors
- Transistors have become smaller over the years
 - Not so much anymore...

Voltage is continuous. Why interpret it only as 0s and 1s?

- Voltage is continuous. Why interpret it only as 0s and 1s?
- Answer: Noise

But, there are applications that can tolerate noise

- But, there are applications that can tolerate noise
- Classic Example: Camera Sensor
 - Photoelectric Effect

- But, there are applications that can tolerate noise
- Classic Example: Camera Sensor
 - Photoelectric Effect

(Epperson, P.M. et al. Electro-optical characterization of the Teletrontx TK5 ..., Opt Eng., 25, 1987)

- But, there are applications that can tolerate noise
- Classic Example: Camera Sensor
 - Photoelectric Effect

(Epperson, P.M. et al. Electro-optical characterization of the Tektrontx TK5 ..., Opt Eng., 25, 1987)

- But, there are applications that can tolerate noise
- Classic Example: Camera Sensor
 - Photoelectric Effect

• Base 2 Number Representation (Binary)

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- \bullet 21₁₀ = 1*10⁰ + 2*10¹ = 21

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^{0} + 2*10^{1} = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^{0} + 2*10^{1} = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position
- $1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^{0} + 2*10^{1} = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position
- $1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^0 + 2*10^1 = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position
- $1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- Binary Arithmetic

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^0 + 2*10^1 = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position
- $1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- Binary Arithmetic

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^0 + 2*10^1 = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position
- $1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$
- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- Binary Arithmetic

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

- Base 2 Number Representation (Binary)
- C.f., Base 10 number representation (Decimal)
- $21_{10} = 1*10^0 + 2*10^1 = 21$
- Weighted Positional Notation
 - Each bit has a weight depending on its position

•
$$1011_2 = 1*2^0 + 1*2^1 + 0*2^2 + 1*2^3 = 11_{10}$$

- $b_3b_2b_1b_0 = b^{0*}2^0 + b^{1*}2^1 + b^{2*}2^2 + b^{3*}2^3$
- Binary Arithmetic

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Hexdecimal (Hex) Notation

- Base 16 Number Representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Four bits per Hex digit
 - $111111110_2 = FE_{16}$
- Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

Hex	Decimal	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
С	12	1100
D	13	1101
Е	14	1110
F	15	1111

Bit, Byte, Word

- Byte = 8 bits
 - Binary 000000002 to 1111111112; Decimal: 0₁₀ to 255₁₀; Hex: 00₁₆ to FF₁₆
 - Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

Bit, Byte, Word

- Byte = 8 bits
 - Binary 000000002 to 1111111112; Decimal: 0₁₀ to 255₁₀; Hex: 00₁₆ to FF₁₆
 - Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

- Word = 4 Bytes (32-bit machine) / 8 Bytes (64-bit machine)
 - Least Significant Byte (LSB) vs. Most Significant Byte (MSB)

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Not

- ~A = 1 when A=0

Not

- ~A = 1 when A=0

Or

- A|B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

Not

- ~A = 1 when A=0

Or

A | B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

And

- A&B = 1 when both A=1 and B=1

Not

~A = 1 when A=0

Or

- A | B = 1 when either A=1 or B=1

	0	1
0	0	1
1	1	1

And

- A&B = 1 when both A=1 and B=1

Exclusive-Or (Xor)

A^B = 1 when either A=1 or B=1, but not both

NOR (OR + NOT)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

NOR (OR + NOT)

Α	В	С
0	0	1
0	1	0
1	0	0
1	1	0

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001
& 01010101 | 01010101 ^ 01010101 ~ 01010101
```

- Operate on Bit Vectors
 - Operations applied bitwise

- Operate on Bit Vectors
 - Operations applied bitwise

```
01101001 01101001 01101001

& 01010101 | 01010101 ^ 01010101 ~ 01010101

01000001 01111101
```

- Operate on Bit Vectors
 - Operations applied bitwise

	01101001	01101001		01101001		
&	01010101	01010101	^_	01010101	~	01010101
	01000001	01111101		00111100		

- Operate on Bit Vectors
 - Operations applied bitwise

	01101001	01101001		01101001		
&	01010101	01010101	^_	01010101	~	01010101
	01000001	01111101		00111100		10101010

Bit-Level Operations in C

- Operations &, I, ~, ^ Available in C
 - Apply to any "integral" data type
 - · long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\cdot \sim 0 \times 41 \rightarrow 0 \times BE$
 - $\cdot \sim 01000001_2 \rightarrow 10111110_2$
 - $\cdot \sim 0 \times 00 \rightarrow 0 \times FF$
 - $\cdot \sim 0000000002 \rightarrow 1111111112$
 - \cdot 0x69 & 0x55 \rightarrow 0x41
 - \cdot 01101001₂ & 01010101₂ \rightarrow 01000001₂
 - \cdot 0x69 | 0x55 \rightarrow 0x7D
 - \cdot 01101001₂ | 01010101₂ \rightarrow 01111101₂

Aside: Logic Operations in C

- Contrast to Logical Operators
 - · &&, ||, !
 - View 0 as "False"
 - Anything nonzero as "True"
 - Always return 0 or 1
 - Early termination (e.g., 0 && 1 && 1)
- Examples (char data type)
 - $\cdot !0x41 \rightarrow 0x00$
 - $\cdot !0x00 \rightarrow 0x01$
 - $\cdot !!0x41 \rightarrow 0x01$
 - · 0x69 && 0x55 → 0x01
 - \cdot 0x69 | | 0x55 \rightarrow 0x01
 - p && *p (avoids null pointer access)

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	
Log. >> 2	
Arith. >> 2	

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010		
<< 3	00010		
Log. >> 2			
Arith. >> 2			

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	
Arith. >> 2	

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	011000
Arith. >> 2	

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	011000

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	101000
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	101000

- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left
- Undefined Behavior
 - Shift amount < 0 or ≥ total amount of bits

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	00011000

Argument x	10100010
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	<i>11</i> 101000

Today: Representing Information in Binary

- Why Binary (bits)?
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - · Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Representing Numbers in Binary

- Different types of number
 - Integer (Negative and Non-negative)
 - Fractions
 - Irrationals

Representing Numbers in Binary

- Different types of number
 - Integer (Negative and Non-negative)
 - Fractions
 - Irrationals

 So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
 - First bit represents sign; 0 for positive; 1 for negative
 - The rest represents magnitude

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
 - First bit represents sign; 0 for positive; 1 for negative
 - The rest represents magnitude

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
 - First bit represents sign; 0 for positive; 1 for negative
 - The rest represents magnitude

- So far we have been discussing non-negative numbers: so called unsigned. How about negative numbers?
- Solution 1: Sign-magnitude
 - First bit represents sign; 0 for positive; 1 for negative
 - The rest represents magnitude

- Bits have different semantics
 - Two zeros...
 - Normal arithmetic doesn't work
 - Make hardware design harder

Signed Value	Binary
0	000
1	001
2	010
3	011
-0	100
-1	101
-2	110
-3	111

- Bits have different semantics
 - Two zeros...
 - Normal arithmetic doesn't work
 - Make hardware design harder

	010
+)	101
	111

Signed Value	Binary
0	000
1	001
2	010
3	011
-0	100
-1	101
-2	110
-3	111

- Bits have different semantics
 - Two zeros...
 - Normal arithmetic doesn't work
 - Make hardware design harder

Signed Value	Binary
0	000
1	001
2	010
3	011
-0	100
-1	101
-2	110
-3	111

- Bits have different semantics
 - Two zeros...
 - Normal arithmetic doesn't work
 - Make hardware design harder

Signed Value	Binary
0	000
1	001
2	010
3	011
-0	100
-1	101
-2	110
-3	111