CSC 252: Computer Organization
Spring 2022: Lecture 2

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcement

 Make sure you can access CSUG machines!!!

* Programming assignment 1 will be posted today.
| will send an announcement when it’s out.
e [tisin C language. Seek help from TAs.

* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.
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Previously in 252...

Problem
e How is a human- :
readable program Algorithm
translated to a
representation that
Program

computers can
understand?

ISA is the contract
between software and
hardware.

Architecture (ISA)

e How does a
modern computer
execute that
program??

Microarchitecture

Circuit



Previously in 252...

C Program Assembly program

void add() { | movl  $1, -4(%rbp)
inta=1; recmem el movl  $2, -8(%rbp)
intb =2; movl  -4(%rbp), Y%eax

intc=a+b: addl -8(%rbp), %eax

}



Previously in 252...

Assembly program Executable Binary
movl  $1, -4(%rbp) | 00011001
movl  $2, -8(%rbp) 01101010
movl  -4(%rbp), Y%eax 11010101

addl -8(%rbp), %eax 01110001
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Previously in 252...

Assembly program Executable Binary
movl  $1, -4(%rbp) | 00011007
movl |$2, -8(%rbp) 01101010
movl | -4(%rbp), %eax| 11010101
addl [-8(%rbp), %eax 01110001

e What’s the difference between an assembly program and
an executable binary?

* They refer to the same thing — a list of instructions that the software
asks the hardware to perform

* They are just different representations
* |nstruction = Operator + Operand(s)



Today: Representing Information in Binary

 Why Binary (bits)?
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Everything in Computers is bits

* Each bit is 0 or 1. Bits are how programs talk to the hardware
* Programs encode instructions in bits
* Hardware then interprets the bits

* Why bits? Electronic Implementation
» Use high voltage to represent 1
* Use low voltage to represent O

< 0 > < 1 > «— 0
1.1V —
0.9V — T N
Low voltage / High voltage \
0.2V —/W \’\f

0.0V —
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Why Bits?

Processors are made of transistors, which are Metal Oxide

Semiconductor (MOS)
e two types: n-type and p-type

n-type (NMOS)
* when Gate has high voltage,
short circuit between #1 and #2
(switch closed)
* when Gate has low voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

#1

Gate =0 (

#2

Terminal #2 must be
connected to GND (0V).




Why Bits?

p-type is complementary to n-type (PMOS)
* when Gate has high voltage,

open circuit between #1 and #2 A
(switch open) l

« when Gate has low voltage,
short circuit between #1 and #2 (
(switch closed) #9

Gate = 1

Gate =0

Terminal #1 must be
connected to +1.2V

10
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Store/Access Data

< 0 >
1.1V —
0.9V —
Low voltage
02V
0.0V —

* Two cross coupled inverters

store a single bit
e Feedback path persists the
value in the “cell”
¢ / transistors for storage
e 2 transistors for access
e A“CT” cell

/‘/\f—\/\
High voltage \

= bjtline

» | 0o—

row select

O  pitline
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Transistors

e Computers are made of transistors

* Transistors have become smaller over the years
e Not so much anymore...
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Transistors

e Computers are made of transistors

* Transistors have become smaller over the years
e Not so much anymore...

Six-core CPU

BA-GirUesign

4.3 billion transistors
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Why Limit Ourselves Only to Binary?

* \oltage is continuous. Why interpret it only as Os and 1s?
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Why Limit Ourselves Only to Binary?

* \/oltage is continuous. Why interpret it only as Os and 1s?
* Answer: Noise

1.1V —
0.9V — / \
0.2V —

0.0V —
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e But, there are applications that can tolerate noise
e Classic Example: Camera Sensor
* Photoelectric Effect
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Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
e \WWeighted Positional Notation
* Each bit has a weight depending on its position
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e Binary Arithmetic
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Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)
© 2710=17100+ 2*107 = 21
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Binary Notation

e Base 2 Number Representation (Binary)
e C.f., Base 10 number representation (Decimal)

© 2710=1"100+ 2*107= 21
e \WWeighted Positional Notation

* Each bit has a weight depending on its position
e 10112=1"20+ 121+ 022+ 1"23= 11710
® bsbob1bo= b0*20 + b1*27 + b2*22 + p3*23

e Binary Arithmetic

0110
+ 0101

1011

11

Decimal
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Hexdecimal (Hex) Notation

- Base 16 Number Representation
- Use characters ‘0’ to ‘9" and ‘A’ to ‘F’
- Four bits per Hex digit
* 111111102 = FE16
- Write FA1D37B16 in C as
- OxFA1D37B
e Oxfald37b

Hex Decimal

TMOOTIT>O©O~NONWN—=O

0

0 N O Or & WO N —

-4 4 4 1 1 1
OO ~0LO N O

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Bit, Byte, Word

e Byte = 8 bits
- Binary 000000002 to 111111112, Decimal: O10 to 25510; Hex: 0016 to FF16
- Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

[b11011

LSb

18



Bit, Byte, Word

e Byte = 8 bits
- Binary 000000002 to 111111112, Decimal: O10 to 25510; Hex: 0016 to FF16
- Least Significant Bit (LSb) vs. Most Significant Bit (MSb)

[b11011

 Word = 4 Bytes (32-bit machine) / 8 Bytes (64-bit machine)
- Least Significant Byte (LSB) vs. Most Significant Byte (MSB)

LSb
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Today: Representing Information in Binary

e Bit-level manipulations
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Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

L
In — Out
N

Or
- A|B =1 when either A=1 or B=1

And
- A&B = 1 when both A=1 and B=1
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— OO0
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Bit-level manipulations

Not
= YA =1 when A=0

~

K
1

In — Qut

Or
- A|B =1 when either A=1 or B=1

And
- A&B = 1 when both A=1 and B=1

Exclusive-Or (Xor)

= AMB = 1 when either A=1 or B=1,
but not both

- O

— O

4

_.LOQo

>

o OO

- O

- O

— OO0

O | -
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NOR (OR + NOT)

- O O O

© == O =«

O O ™ <
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A=0

NOR (OR + NOT)

B=1-

|0 © ™
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Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101

~ 01010101
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Bit Vector Operations

e Operate on Bit Vectors
- Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 “~ 01010101

~ 01010101

01000001 01111101 00111100

10101010
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Bit-Level Operations in C

e Operations &, |, ~, A Available in C

IH

- Apply to any “integral” data type
- long, int, short, char, unsigned

- View arguments as bit vectors

- Arguments applied bit-wise

e Examples (Char data type)
~0x41 = OxBE
- ~01000001; - 10111110:
~Qx00 — OxFF
- ~00000000; - 11111111,
0x69 & 0x55 — 0x41
- 01101001, & 01010101, = 01000001;
Ox69 | 0x55 = Ox7D
- 01101001, | 01010101, = 01111101;

23



Aside: Logic Operations in C

e Contrast to Logical Operators
- &&, |1, !
- View 0 as “False”
- Anything nonzero as “True”
- AlwaysreturnOor1
- Early termination (e.g., 0 && 1 && 1)

* Examples (char data type)
10x41 - 0x00
10x00 — 0x01
110x41 - Ox01

0x69 && Ox55 = 0x01
0xe9 || @Ox55 = 0x01
p & *p  (avoids null pointer access)

24



Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

Log. >> 2

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y
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« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x
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Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3
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Argument x
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Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x| 01100010
<< 3 00010000

Log. >> 2 011000

Arith. >> 2

Argument x| 10100010
<< 3

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift
- Replicate most significant bit on left

e Undefined Behavior
- Shift amount < 0 or = total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

011000

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x
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<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3
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Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

Arith. >> 2




Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

101000

Arith. >> 2




Shift Operations

e Left Shift: x << y
- Shift bit-vector x left y positions

« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2




Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2

101000




Shift Operations

e Left Shift: x << y

- Shift bit-vector x left y positions
« Throw away extra bits on left
- Fill with 0’s on right

e Right Shift: x >> v
- Shift bit-vector x right y positions
- Throw away extra bits on right
- Logical shift
- Fill with 0’s on left
- Arithmetic shift

- Replicate most significant bit on left

e Undefined Behavior

- Shift amount < 0 or > total amount of bits

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log.>> 2

00101000

Arith. >> 2

11101000




Today: Representing Information in Binary

* I[ntegers
- Representation: unsigned and signed
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Representing Numbers in Binary

 Different types of number
* Integer (Negative and Non-negative)
* Fractions
* |rrationals

]
-7 6 -5 -4 -3 -2-101 2 3 4 5 6 7..
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Representing Numbers in Binary

 Different types of number
* Integer (Negative and Non-negative)
* Fractions
* |rrationals

—+H e
-7 6 -5 -4 -3 -2-101 2 3 4 5 6 7..
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Encoding Negative Numbers



Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?
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Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude
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Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

1
0 1 2 3 4 5 6 7

000 gy 010 914100 451 110 444
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Encoding Negative Numbers

e So far we have been discussing non-negative numbers: so
called unsigned. How about negative numbers?

e Solution 1: Sign-magnitude
 First bit represents sign; O for positive; 1 for negative
* The rest represents magnitude

11—
-3 -2 -1 0 1 2 3

110 000 010
111 101100 001 011
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Sign-Magnitude Implications

e Bits have different semantics
e [WO zeros...
e Normal arithmetic doesn’t work
* Make hardware design harder

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
100
101
110
111
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Sign-Magnitude Implications

e Bits have different semantics Signed  Binary

* Two zeros... e

| | | 0 000

 Normal arithmetic doesn’t work ] 001

» Make hardware design harder g 8]?

0 100

. 101

010 2 110

+) 101 -3 111

111
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Sign-Magnitude Implications

¢ Bits have different semantics

e TWO Zeros...

e Normal arithmetic doesn’t work
* Make hardware design harder

010
+) 101

111

+) -1

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
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101
110
111

29



Sign-Magnitude Implications

e Bits have different semantics
e [WO zeros...
e Normal arithmetic doesn’t work
* Make hardware design harder

Signed
Value
0

y
2
3

oo LS

Binary

000
001
010
011
100
101
110
111
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