
CSC 252: Computer Organization 
 Spring 2022: Lecture 20 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Cache problem set: https://www.cs.rochester.edu/courses/
252/spring2022/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 due April 8.

Today

Due

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html

Carnegie Mellon

Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

!3

Carnegie Mellon

Interrupts in a Processor

!4

Processor

Chipset
Bus

ke
yb

oa
rd

di
sk

ne
tw

or
k

Interrupt
Signal
Lines

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

!5

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

!5

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

• I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!5

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

!6

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults

!6

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

!6

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable
• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program through a SIGABRT signal

!6

Carnegie Mellon

Each Exception Has a Handler
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

!7

0
1
2 ...

n-1

Exception
Table

Code for
exception handler 0

Code for
exception handler 1

Code for
exception handler 2

Code for
exception handler n-1

...

Exception
numbers

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

!8

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

!8

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of
the kernel, which generates the SIGINT signal, which is then delivered
to the target process

!8

Carnegie Mellon

When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (e.g., page fault)

•Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)
• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)
• Indicating a critical error has occurred, and that the system is

probably about to crash

!9

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

!10

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

!10

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction
• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

!10

Carnegie Mellon

Process Address Space

!11

Kernel space

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write data segment
(.data, .bss)

Read-only code segment
(.init, .text, .rodata)

Loaded from
the executable
file

Program
Counter

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

!12

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem 1: Space

!13

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem 1: Space

!13

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

• Space:

• Each process’s address space is huge (64-bit): can memory hold it

(16GB is just 34-bit)?
• 2^48 bytes is 256 TB
• There are multiple processes, increasing the storage requirement

further

Carnegie Mellon

Recall: Memory Hierarchy

!14

CPU

Registers
(DFF)

Cache
(SRAM)

Hard Disk/
SSD

Several
TBs

• Solution: store all the data in disk (several TBs typically), and
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a

process won’t use all 64 bits. So it’s OK.

Main/Physical
Memory
(DRAM)

Several GBs

~1 ns 1-10 ns
100 ns

~ 10 us

Carnegie Mellon

Recall: Memory Hierarchy

!14

CPU

Registers
(DFF)

Cache
(SRAM)

Hard Disk/
SSD

Several
TBs

• Solution: store all the data in disk (several TBs typically), and
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main
memory/physical memory and the disk?

• Ideally should be managed by the OS, not the programmer.

Main/Physical
Memory
(DRAM)

Several GBs

~1 ns 1-10 ns
100 ns

~ 10 us

Carnegie Mellon

• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but

there is one single physical memory!
• What if a malicious program steals/modifies data from your program?

• If the malicious program get the address of the memory that stores your
password, should it be able to access it? If not, how to prevent it?

• We need isolation.

Problem 2: Security

!15

CPU Main/Physical
Memory
(DRAM)

Several GBs

Registers
(DFF)

Cache
(SRAM)

Hard Disk/
SSD

Several
TBs

Carnegie Mellon

• Different processes will have exclusive access to just one part of the
physical memory.

• This is called Segments.

• Need a base register and a bound register for each process. Not

widely used today. x86 still supports it (backward compatibility!)
• Fast but inflexible. Makes benign sharing hard.

One Way to Isolate: Segments

!16

Main/Physical
Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

base 1

bound 1

base 2

bound 2

Carnegie Mellon

• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.

• Need to allow assigning discontinuous chunks of memory to
processes.

Problem 3: Fragmentation (with Segments)

!17

Main/Physical
Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

128 MB

12 MB

12 MB

Carnegie Mellon

• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)

!18

CPU

Registers
(DFF)

Cache
(SRAM)

Main/Physical
Memory Hard Disk/

SSD

Program 1
stdlib.so

Program 2
stdlib.so

stdlib.so

Carnegie Mellon

The Big Idea: Virtual Memory

!19

Physical/Main
Memory

Process 1

Virtual Memory
of Process 1

Process 2

Virtual Memory
of Process 2

Hard Drive

…

…

1

2

3

4

99

100

…

101

102

103

104

105

199

200

201

202

203

204

205

…

Carnegie Mellon

“Cache” Data in Physical Memory

!20

Physical/Main
Memory

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

… 1

2

3

4

99

100

101

102

103

104

105

Virtual Memory
of Process 2

…

…

Virtual Memory
of Process 1

Data 1

Data 2

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Allow Using Discontinuous Allocation

!21

Physical/Main
Memory

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

1

2

3

4

Data 1

Data 2

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Allow Using Discontinuous Allocation

!21

Physical/Main
Memory

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

1

2

3

4

Data 1

Data 2

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Page Table

!22

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

…

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

!23

Physical/Main
Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

!23

Physical/Main
Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

!23

Physical/Main
Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

Data X

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging

!23

Physical/Main
Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

Data X

2

99

100

101

102

103

104

105

Carnegie Mellon

Data 2

99

Prevent Unwanted Sharing

!24

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

A

4

B

C

D

Page Table
of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

Data 3

…

Unallocated

…

…

…

Page Table
of Process 2

…

…
O

3

P

Unallocated

Q

R

4

…

…

…

…

O

P

Q

R

1

100

101

102

103

104

105

Carnegie Mellon

Data 2

99

Prevent Unwanted Sharing

!24

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Process 2

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

A

4

B

C

D

Page Table
of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

Data 3

…

Unallocated

…

…

…

Page Table
of Process 2

…

…
O

3

P

Unallocated

Q

R

4

…

…

…

…

O

P

Q

R

1

100

101

102

103

104

105

Carnegie Mellon

Enable Benign Sharing

!25

Physical/Main
Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory
of Process 1

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table
of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…

…

…

…

…

…

…

…

O

P

Q

R

Data 2

99

Process 2

Virtual Memory
of Process 2…

…

Data 3

…

Unallocated

…

…

…

Page Table
of Process 2

…

…
O

3

P

Unallocated

Q

R

4

100

101

102

103

104

105

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

!26

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number
• Guest’s name is a virtual address
• Room number is physical address
• Front desk is doing address translation!

!26

Carnegie Mellon

Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number
• Guest’s name is a virtual address
• Room number is physical address
• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical

address). You can still find her without knowing it
• Protection: Guest could have block on calls, block on calls from

specific callers (permissions)
• Sharing: Multiple guests (virtual addresses) can share the same

room (physical address)

!26

Carnegie Mellon

A System Using Physical Memory Only

• Used in “simple” systems like embedded microcontrollers in
devices like cars, elevators, and digital picture frames

!27

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

4

Carnegie Mellon

A System Using Virtual Memory

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science (back in the 60s)

•MMU: Memory Management Unit; part of the OS

!28

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8:
...

CPU
Virtual address

(VA)

CPU Chip

44100

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.
• Effectively, virtual memory system transparently share the physical

memory across different processes

!29

Carnegie Mellon

The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.
• Effectively, virtual memory system transparently share the physical

memory across different processes
• Manage the sharing automatically: hardware-software collaborative

strategy (too complex for hardware alone)

!29

