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Announcements
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• Cache problem set: https://www.cs.rochester.edu/courses/
252/spring2022/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 4 due April 8.

Today

Due

https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
https://www.cs.rochester.edu/courses/252/spring2022/handouts.html
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Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered
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Interrupts in a Processor
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor
• Events that can happen at any time. Computers have little control.
• Indicated by setting the processor’s interrupt pin
• Handler returns to “next” instruction

• Examples:
• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt
• Used by the kernel to take back control from user programs

•  I/O interrupt from external device
• Hitting Ctrl-C at the keyboard
• Arrival of a packet from a network
• Arrival of data from a disk

!5



Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:
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Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional
• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable 
• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes
• Aborts

• Unintentional and unrecoverable
• Examples: illegal instruction, parity error, machine check
• Aborts current program through a SIGABRT signal
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Each Exception Has a Handler
• Each type of event has a  

unique exception number k


• k = index into exception 
table


• Exception table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time exception k occurs
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of 
the kernel, which generates the SIGINT signal, which is then delivered 
to the target process
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When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue 

without resolving the exception (e.g., page fault)

•Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU) 
• Synchronous exceptions are usually unmaskable 

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI) 
• Indicating a critical error has occurred, and that the system is 

probably about to crash
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction
• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!

• Aborts

• Never returns to the program
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Process Address Space
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Memory
Process 1

Multiprocessing Illustration
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Memory
Process 1

Problem 1: Space
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Memory
Process 1

Problem 1: Space
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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)? 
• 2^48 bytes is 256 TB 
• There are multiple processes, increasing the storage requirement 

further
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Recall: Memory Hierarchy
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Recall: Memory Hierarchy
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CPU
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• Solution: store all the data in disk (several TBs typically), and 
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a 

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main 
memory/physical memory and the disk?


• Ideally should be managed by the OS, not the programmer.
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• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but 

there is one single physical memory! 
• What if a malicious program steals/modifies data from your program?


• If the malicious program get the address of the memory that stores your 
password, should it be able to access it? If not, how to prevent it?  

• We need isolation.

Problem 2: Security
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• Different processes will have exclusive access to just one part of the 
physical memory.


• This is called Segments.

• Need a base register and a bound register for each process. Not 

widely used today. x86 still supports it (backward compatibility!) 
• Fast but inflexible. Makes benign sharing hard.

One Way to Isolate: Segments
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• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in 

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later. 

• Need to allow assigning discontinuous chunks of memory to 
processes.

Problem 3: Fragmentation (with Segments)
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• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s 

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)
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The Big Idea: Virtual Memory
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“Cache” Data in Physical Memory
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Allow Using Discontinuous Allocation
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Allow Using Discontinuous Allocation
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Page Table
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Demand Paging
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Demand Paging
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Demand Paging
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Demand Paging
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Data 2

99

Prevent Unwanted Sharing
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Data 2

99

Prevent Unwanted Sharing
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Enable Benign Sharing
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Analogy for Virtual Memory: A Secure Hotel
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Analogy for Virtual Memory: A Secure Hotel

• Call a hotel looking for a guest; what happens?

• Front desk routes call to room, does not give out room number 
• Guest’s name is a virtual address 
• Room number is physical address 
• Front desk is doing address translation!

• Benefits

• Ease of management: Guest could change rooms (physical 

address). You can still find her without knowing it 
• Protection: Guest could have block on calls, block on calls from 

specific callers (permissions) 
• Sharing: Multiple guests (virtual addresses) can share the same 

room (physical address)
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A System Using Physical Memory Only

• Used in “simple” systems like embedded microcontrollers in 
devices like cars, elevators, and digital picture frames
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A System Using Virtual Memory

• Used in all modern servers, laptops, and smart phones

• One of the great ideas in computer science (back in the 60s)

•MMU: Memory Management Unit; part of the OS
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The Big Idea: Virtual Memory
•What Does a Programmer Want?
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The Big Idea: Virtual Memory
•What Does a Programmer Want?

• Infinitely large, infinitely fast memory
• Strong isolation between processes to prevent unwanted sharing
• Enable wanted sharing

• Virtual memory to the rescue
• Present a large, uniform memory to programmers
• Data in virtual memory by default stays in disk
• Data moves to physical memory (DRAM) “on demand”
• Disks (~TBs) are much larger than DRAM (~GBs), but 10,000x slower.
• Effectively, virtual memory system transparently share the physical 

memory across different processes
• Manage the sharing automatically: hardware-software collaborative 

strategy (too complex for hardware alone)
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