
CSC 252: Computer Organization 
 Spring 2022: Lecture 26 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Assignment 5 due April 21.
• Will release assignment 4 grades soon.

Today
Due

Last Lecture

Carnegie Mellon

Fine-Grained Switching

!3

•One big bonus of fine-grained switching: no need for
branch predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach

Carnegie Mellon

Fine-Grained Switching

!4

•One big bonus of fine-grained switching: no need for
branch predictor!!

The branch prediction approach

Carnegie Mellon

Fine-Grained Switching

!5

•One big bonus of fine-grained switching: no need for branch
predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

!5

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

!5

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Thread Switching

!6

•A perhaps not great analogy: yellow traffic light

Carnegie Mellon

Thread Switching

!6

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources

Carnegie Mellon

Thread Switching

!6

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?

Carnegie Mellon

Thread Switching

!6

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory
• Have dedicated context for each thread (e.g., each thread has a

dedicated register file)

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory
• Have dedicated context for each thread (e.g., each thread has a

dedicated register file)
• Lots of hardware resources, but is a must if we want to support

a lot of threads.

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory
• Have dedicated context for each thread (e.g., each thread has a

dedicated register file)
• Lots of hardware resources, but is a must if we want to support

a lot of threads.
• GPU does this (later).

Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory
• Have dedicated context for each thread (e.g., each thread has a

dedicated register file)
• Lots of hardware resources, but is a must if we want to support

a lot of threads.
• GPU does this (later).
• CPU does this for a limited number of threads (hyper-threading,

later).

Carnegie Mellon

Multi-threading Illustration (so far…)

!8

Thread 1

Context
Switch

Thread 2

Coarse-
grained MT

Fine-grained MT
without hw support

Thread 3

Fine-grained MT
with hw support

Cycle

Carnegie Mellon

Multi-threading Illustration (so far…)

!8

Thread 1

Context
Switch

Thread 2

Coarse-
grained MT

Fine-grained MT
without hw support

Thread 3

Fine-grained MT
with hw support

Cycle
Why these
empty slots?

Carnegie Mellon

Modern Single-Core: Superscalar

!9

Instruction Control

Registers

Instruction
Decoder

Instruction
queue

Instruction
Cache

PC

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store Data Cache

• Typically has multiple function units to allow for decoding and
issuing multiple instructions at the same time

• Called “Superscalar”

Carnegie Mellon

From Scalar to Multi-Scalar Multi-threading

!10

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

From Scalar to Multi-Scalar Multi-threading

!10

Functional Units

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

Simultaneous Multi-Threading (SMT)

!11

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control
Instruction

Decoder

Data Cache

Instruction
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A

Carnegie Mellon

Simultaneous Multi-Threading (SMT)

!11

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control
Instruction

Decoder

Data Cache

Instruction
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A
Reg B Instruction queue

PC B

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!12

Thread 1

Context
Switch

Thread 2

Coarse-grained MT on
a superscalar core SMT

Thread 3

Thread 4

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!12

Thread 1

Context
Switch

Thread 2

Coarse-grained MT on
a superscalar core SMT

Thread 3

Thread 4

Can now make use
of idle issue slots in
conventional MT
cores.

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!12

Thread 1

Context
Switch

Thread 2

Coarse-grained MT on
a superscalar core SMT

Multiple threads
actually execute in
parallel (even with
one single core)

Thread 3

Thread 4

Can now make use
of idle issue slots in
conventional MT
cores.

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!12

Thread 1

Context
Switch

Thread 2

Coarse-grained MT on
a superscalar core SMT

Multiple threads
actually execute in
parallel (even with
one single core)

No/little context
switch overhead

Thread 3

Thread 4

Can now make use
of idle issue slots in
conventional MT
cores.

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Single core
• Multi-core
• Cache coherence

!13

Carnegie Mellon

Multi-Threading on a Multi-core Processor

• Each core can run
multiple threads, mostly
through coarse-grained
switching.

• Fine-grained switching
on conventional multi-
core CPU is too costly.

!14

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

Carnegie Mellon

Combine Multi-core with SMT
• Common for laptop/desktop/server machine. E.g., 2 physical

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

!15

Carnegie Mellon

Asymmetric Multiprocessor (AMP)

!16

En
er

gy
 C

on
su

m
pt

io
n

Performance

Big Core Small Core

Frequency
Levels

• Offer a large performance-energy trade-off space

Carnegie Mellon

Asymmetric Chip-Multiprocessor (ACMP)

!17

• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Single core
• Multi-core
• Cache coherence

!18

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.

!19

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

!19

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

!19

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone

!19

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they

ensure they all see a consistent state?

!19

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses

to x in memory are serialized by mutex.

!20

C1 C2

x
Main Memory

1000

Bus

Write: x=1000 Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

x
Main Memory

1000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

2000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x Read: x Should not

return 1000!
2000

Carnegie Mellon

Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system,

and they could have different values at the same time.

!22

Carnegie Mellon

Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system,

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent

!22

Carnegie Mellon

Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system,

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

!22

Carnegie Mellon

Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system,

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)

!22

Carnegie Mellon

Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system,

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

!22

Carnegie Mellon

Readings: Cache Coherence
• Most helpful

• Culler and Singh, Parallel Computer Architecture
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

• Patterson&Hennessy, Computer Organization and Design
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache

systems,” IEEE Trans. Computers, 1978.
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA

2003.
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”

ISCA 1988.

!23

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.

!24

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?

!24

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

!24

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB

• Hardware does not guarantee that TLBs of different core are coherent
• ISA provides instructions for OS to flush PTEs
• Called “TLB shootdown”

!24

Carnegie Mellon

Today
• Power consumption and dark silicon

• GPU

• Accelerators

!25

Dynamic Power

!26

v

C

Vdd

Dynamic Power

!26

v

C

Vdd

Dynamic Power

!26

v

C

Vdd

Dynamic Power

!26

Energy dissipated for every transition (0->1 or 1->0)

v

C

Vdd

Dynamic Power

!27

v

C

Vdd

Average dynamic power of a transistor:
P = α • (E / T) = α • E f = ½ α C Vdd

2 f

α: switch activity factor. No switching, no dynamic power consumption

Dynamic Power

P = k C V2 f

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency
• 15% reduction in voltage requires about 15% slow down in frequency

!28

Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing
voltage => machine might crash (cycle time shorter than the critical
path delay)

• Corollary: reducing voltage requires reducing frequency
• 15% reduction in voltage requires about 15% slow down in frequency
• What’s the impact on dynamic power? 0.853 ≈ 60% -> 40% dynamic

power reduction.

!28

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate

!29

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power

!29

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!

!29

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

!29

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

!29

P = k C f3

Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

• Dynamic power becomes 4 x (1/4)3 = 1/16

!29

P = k C f3

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

• In 1975 he revised the prediction to doubling every 2 years

Moore’s Law

!30

• Gordon Moore in 1965 predicted that the number of transistors
doubles every year

• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors double

about every 18 months (Moore never used the number 18…)

Moore’s Law

!31

!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Scale factor α<1
α = 0.7 => 2X more transistors!

Dennard Scaling

!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Dennard Scaling

!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Transistors/Area d d/α2

Dennard Scaling

!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Propagation time
(~CV/I)

t αt

Frequency (1/t) f f/α

Transistors/Area d d/α2

}

Dennard Scaling

!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value

Dopant
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W,
Tox

αL, αW,
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1
α = 0.7 => 2X more transistors!

Propagation time
(~CV/I)

t αt

Frequency (1/t) f f/α

Power (CV2f) P α2P
Power/area
(Power density)

Pd Pd

Transistors/Area d d/α2

}

Dennard Scaling

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

!33

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

!33

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

!33

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

• Overall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

!33

Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

•More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

• Higher frequency means better performance even under the
same microarchitecture.

• Overall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

!33

Moore’s law gave us more transistors;

Dennard scaling made them useful.

Bob Colwell, DAC 2013, June 4, 2013

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

!34

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling

!34

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling

!34

Source: P. Packan (Intel),
2007 IEDM Short Course

2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V)
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to

switch a transistor, called threshold voltage (Vth).
• Vth stopped scaling because leakage power/reliability/variation

becomes huge issues, and accordingly Vdd stops scaling
• The demise of Dennard Scaling means the power density

(power consumption per unit area) will increase rather than
staying stable.

!34

2005: End of Dennard Scaling

!35

2005: End of Dennard Scaling

!35

2005: End of Dennard Scaling

!35

Hot
Plate

2005: End of Dennard Scaling

!35

Nuclear
Reactor

Hot
Plate

2005: End of Dennard Scaling

!35

Sun
Surface
(~104)

Nuclear
Reactor

Hot
Plate

Dark Silicon
n. [därk, sĭl′ĭ-kən, -kŏn′]
More transistors on chip (due to Moore’s Law), but a growing
fraction cannot actually be used due to power limits (due to the
end of Dennard Scaling).

!36

2005: End of Dennard Scaling

!37

• Initial response has been to lower frequency and increase cores / chip

2005: End of Dennard Scaling

!37

• Initial response has been to lower frequency and increase cores / chip

2005: End of Dennard Scaling

!37

• Initial response has been to lower frequency and increase cores / chip
• There is a limit to core scaling. Why?

2007: A Revolutionary New Computer

!38

!39

OPINION O
PI

N
IO

N

www.pnas.org/cgi/doi/10.1073/pnas.1302988110 PNAS | April 2, 2013 | vol. 110 | no. 14 | 5273

No Moore’s Law for batteries
Fred Schlachter1

American Physical Society, Washington, DC 20045

The public has become accustomed to
rapid progress in mobile phone technol-
ogy, computers, and access to information;
tablet computers, smart phones, and other
powerful new devices are familiar to most
people on the planet.

These developments are due in part to the
ongoing exponential increase in computer
processing power, doubling approximately
every 2 years for the past several decades.
This pattern is usually called Moore’s Law
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling
prophecy. Unfortunately, much of the
public has come to expect that all technol-
ogy does, will, or should follow such a law,
which is not consistent with our everyday
observations: For example, the maximum
speed of cars, planes, or ships does not in-
crease exponentially; maximum speed bare-
ly increases at all.

Cars require a portable fuel, preferably
one that is widely available, low in cost,
and with a high energy density. Gasoline
is nature’s ideal fuel. A full tank of gasoline
contains as much energy as 1,000 sticks of
dynamite. However, cost, national security,
global climate change, and pollution lead
to a national need to wean ourselves from
powering cars with gasoline. There are not
many alternate candidates. Natural gas is
still a fossil fuel, and hydrogen can pres-
ently be produced only at a high energy cost
and has low energy density. And then there
is electricity. We power our mobile phones
and our laptops with lithium-ion batter-
ies—why not power our cars this way? We
already have an infrastructure for generat-
ing and distributing electricity. If only we
had batteries that could store enough ener-
gy to power a car several hundred kilome-
ters and that were not too heavy and would
not cost a fortune.

Sadly, such batteries do not exist. There
is no Moore’s Law for batteries. The reason

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be
made on processors. Batteries are not like
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do
anodes, cathodes, and electrolytes. A D-cell
battery stores more energy than an AA-cell.
Potentials in a battery are dictated by the
relevant chemical reactions, thus limiting
eventual battery performance. Significant
improvement in battery capacity can only
be made by changing to a different chem-
istry.

Scientists and battery experts, who have
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
veloping new battery chemistries—lithium/
air and lithium/sulfur are the leading can-
didates—are considerably less optimistic
now. Improvement in energy storage den-
sity of lithium-ion batteries has been only
incremental for the past decade. A large-
scale research consortium (the Joint Center
for Energy Storage Research) has been cre-
ated with an ambitious goal of improving
energy storage density by a factor of five
and reducing cost by a factor of five in 5
years. This can only happen if there is a ter-
rific, wonderful, and amazing breakthrough
in battery technology. One can only hope.

In addition to increased performance
and lower cost, batteries need to be safe. Of
course gasoline is not safe, there are hun-
dreds of thousands of car fires every year in
the United States. Nonetheless, the public
is more wary of electricity than of gasoline,
and the recent safety issues of lithium-ion
batteries on Boeing 787 aircraft have done
little to reassure the public about the safety
of such batteries. Consumers are question-
ing the practice of putting into cars batter-
ies that can burst into flames.

Meanwhile, while waiting for a wonderful

breakthrough in battery technology, we do
have a valuable and underutilized resource:
energy efficiency, which in many cases is
free or even has a negative cost. Cars can
be made more energy efficient by reducing
size, weight, and power. Incentives to re-
duce vehicle miles driven can be made by
improving access to public transit. There
are policy and financial incentives to driv-
ing less, such as higher taxes on gasoline to
investments in the public transportation
infrastructure.

Improving the energy efficiency of cars
is not a long-term solution to the problems
related to combustion of fossil fuels, as cars
will still be powered by gasoline. However,
improved energy efficiency can happen and
is happening. A good example of improved
energy efficiency is hybrid cars, which can
be considerably more energy efficient than
traditional cars. We must take this prag-
matic direction while awaiting that terrific
breakthrough in battery technology we all
so desire.

Author contributions: F.S. wrote the paper.

The author declares no conflict of interest.
1E-mail: fsschlachter@gmail.com.

Fred Schlachter.

“Improving” Energy Capacity

!40
600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!40

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!40

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!40

Screen Size (inches)

Ba
tte

ry
 C

ap
ac

ity
 (m

Ah
)

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3

���	��
�

���

���

���

���

���

���������������

http://www.gsmarena.com/makers.php3

“Improving” Energy Capacity

!41

“Improving” Energy Capacity

!41

“Improving” Energy Capacity

!41

“Improving” Energy Capacity

!41

“Improving” Energy Capacity

!41

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Pure Overhead6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Doing Actual Work

Pure Overhead6%
10%

10%

22%
19%

34%

Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010

ALU

RF

Ctrl

Pipe
D$

IF

IF: Instruction fetch
Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache
RF: Register file
ALU: Functional units

Computation vs. Data Movement

!43

ALU

RF

Ctrl

Pipe
D$

IF

64-bit DP
20pJ 26 pJ 256 pJ

1 nJ

500 pJ Efficient
off-chip link

256-bit buses

16 nJ
DRAM
Rd/Wr

256-bit access
8 kB SRAM 50 pJ

20mm

Communication Dominates Arithmetic

Challenges for future computing systems, Bill Dally, 2015

Data movement energy >> computation energy

!44

1
3

15 19

64 72
125 144

374 480

6291
12000

330000

1

10

100

1000

10000

100000

1000000

IN
T8

 A
D

D

IN
T1

6
A

D
D

IN
T8

 M
U

L

IN
T8

 M
A

C

IN
T1

6
M

U
L

IN
T1

6
M

A
C

FP
16

 A
D

D

1B
 S

R
A

M
 W

R

FP
16

 M
A

C

N
O

C

1B
 M

IP
I T

x

D
R

A
M

W
ire

le
ss

Normalized Energy

Compute

Data Transfer

Computation vs. Data Movement
Data movement energy >> computation energy

SIMD
• Single Instruction (operating on) Multiple Data

• Amortizing the cost of instruction delivery/

control across many execution units (even
cores).

• Almost all modern ISAs provide such
instructions:

• x86: MMX/SSE/AVX
• Arm: Neon

!45

6%
10%

10%

22%
19%

34%

ALU

RF

Ctrl

Pipe
D$

IF

Graphics Processing Units/GPUs (SIMT)
• Designed for graphics rendering, which is massively parallel.

!46

N
EE382N: Principles of Computer Architecture

3Adding Programmability to the
Graphics Pipeline

3D Application
or Game

3D API:
OpenGL or
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization &
Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU
Command &

Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operation

s

Framebuffer

Pixel
UpdatesGPU

Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois,
Urbana-Champaign

Graphics rendering pipeline based on rasterization

Same program

for all vertices

Same program

for all pixels

�47

N
EE382N: Principles of Computer Architecture

15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian

�48

N
EE382N: Principles of Computer Architecture

23Two cores (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian

�49

N
EE382N: Principles of Computer Architecture

24Four cores (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

�50

N
EE382N: Principles of Computer Architecture

25Sixteen cores (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian

�51

N
EE382N: Principles of Computer Architecture

26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

But… many fragments should
be able to share an instruction
stream!

Kayvon Fatahalian, 2008Kayvon Fatahalian

N
EE382N: Principles of Computer Architecture

28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

Kayvon Fatahalian, 2008Kayvon Fatahalian �52
N

EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian

�53
N

EE382N: Principles of Computer Architecture

31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul vec_o0, vec_r0, vec_r3

VEC8_mul vec_o1, vec_r1, vec_r3

VEC8_mul vec_o2, vec_r2, vec_r3

VEC8_mov vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian

SIMD/vector instructions, each operates on a vector of 8 elements here.

�54

16 cores, each with 8 ALUs. Each core here runs the same
program (fragment shader)

N
EE382N: Principles of Computer Architecture

32128 fragments in parallel

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian

�55

16 cores, each with 8 ALUs. Cores here run different programs
(some are processing vertices, some are processing fragments)

N
EE382N: Principles of Computer Architecture

33128 [] in parallel

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Each Core Does Fine-Grained Multi-threading

!56

N
EE382N: Principles of Computer Architecture

33128 [] in parallel

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Warp: a group of
threads (8 here)

No need for branch prediction and out-of-order execution.
Simple core design. Each thread has its own set of

registers in hardware to minimize context switch overhead.

Nvidia Maxwell GPU (2014)

!57

• Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:

• Physics simulation
• Deep learning
• Computer vision

Nvidia Maxwell GPU (2014)

!57

• Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:

• Physics simulation
• Deep learning
• Computer vision

