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Announcements

e Assignment 5 due April 21.
* Will release assignment 4 grades soon.

Today
Due

Last Lecture



Fine-Grained Switching

* One big bonus of fine-grained switching: no need for

The stalling approach
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* One big bonus of fine-grained switching: no need for

branch predictor!!
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch

predictor!!

The fine-grained multi-threading approach

X0rg %Srax, %srax
Inst x from TID=1
Inst y from TID=2
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch
predictor!!

» Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.q., separate register files).

The fine-grained multi-threading approach

1 2 3 4 5 6 7

X0rg %rax, %srax F D
Inst x from TID=1 F
Inst y from TID=2

m O m

mom<Z

jne L1 # Not taken

Mmoo mZ|S

Inst x+1 from TID=1

Mmoo mZ S

Inst y+1 from TID=2

momZzZ s

irmovg $1, %rax # Fall Through

Inst x+2 from TID=
Inst y+2 from TID=

1
2

mom<Z s

momZ S




Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch
predictor!!

» Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.q., separate register files).
* GPUs do this (among other things). More later.

The fine-grained multi-threading approach
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Thread Switching

* A perhaps not great analogy: yellow traffic light

e Context switching is pure overhead, but you have to have
It in order to support many threads with limited resources

* What does thread switching do?

Thread 1 (main thread) Thread 2 (peer thread)

stack 1 stack 2
Thread 1 context: Thread 2 context:
Data registers Data registers
Condition codes Condition codes
SP1 SP2
PC1 PC2
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Thread Switching

* A perhaps not great analogy: yellow traffic light
e Context switching is pure overhead, but you have to have
It in order to support many threads with limited resources

* What does thread switching do?
e Save the context for the old thread, and restore the context of the
new thread

* How do you implement thread context switching?
e Save/restore thread contexts in memory
e Have dedicated context for each thread (e.g., each thread has a
dedicated register file)
e | ots of hardware resources, but is a must if we want to support
a lot of threads.
e GPU does this (later).
e CPU does this for a limited number of threads (hyper-threading,
later).
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Multi-threading lllustration (so far...)

Coarse- Fine-grained MT Fine-grained MT
grained MT without hw support with hw support

Why these [] []

empty slots? —» Cycle

- Thread 1 . .

Context
Switch

- Thread 2

B Thread 3




Modern Single-Core: Superscalar

* Typically has multiple function units to allow for decoding and
Issuing multiple instructions at the same time

e Called “Superscalar”

Instruction Control

Instruction
Cache
Registers Instruction
A queue PC
y \4

Functional Units

" Data Cache




From Scalar to Multi-Scalar Multi-threading

]
Thread 1
a N
Context
Switch

- Thread 2
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From Scalar to Multi-Scalar Multi-threading

Functional Units

/11N

- Thread 1

Context
Switch

- Thread 2
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Simultaneous Multi-Threading (SMT)

 Intel call it hyper-threading.

e Replicate enough hardware structures to process K instruction
streams, i.e., threads. K copies of all registers. Share functional units.

e SMT = Superscalar + Multi-threading

Instruction Control
Instruction
Reg A Instruction queue Cache

A A

I

PC A
A 4 \ 4
Functional Units




Simultaneous Multi-Threading (SMT)

 Intel call it hyper-threading.

e Replicate enough hardware structures to process K instruction
streams, i.e., threads. K copies of all registers. Share functional units.

e SMT = Superscalar + Multi-threading

Instruction Control
Instruction
Reg A Instruction queue Cache
A v I
Reg B Instruction queue |
T PCA PC B
\ 4 l VvV V
Functional Units




Conventional Multi-threading vs. Hyper-threading

Coarse-grained MT on
a superscalar core

SMT

- Thread 1

Context
Switch

- Thread 2

B Thread 3

Thread 4
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Conventional Multi-threading vs. Hyper-threading

Coarse-grained MT on
a superscalar core

SMT

Can now make use

of idle issue slots in
conventional MT
. Thread 1 cores.
Context :
Switch Multiple threads |
actually execute in
B Thread 2 parallel (even with
one single core)
B Thread 3
No/little context
Thread 4 switch overhead
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Today

* Hardware support of threads

* Multi-core
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Multi-Threading on a Multi-core Processor

Core 0
Regs
L1 L1
d-cache |i-cache

L2 unified
cache

Core n-1 :
Regs
L1 L1
d-cache |i-cache

L2 unified
cache

L3 unified cache
(shared by all cores)

Main memory

e Each core can run
multiple threads, mostly
through coarse-grained
switching.

* Fine-grained switching
on conventional multi-
core CPU is too costly.

14



Combine Multi-core with SMT

* Common for laptop/desktop/server machine. E.g., 2 physical
cores, each core has 2 hyper-threads => 4 virtual cores.

e Not for mobile processors (Hyper-threading costly to implement)

CPU lCaches ] Mainboard ] Memoryl SPD ] Graphics l Bench ] About I

Processor
Name Intel Core i3
Code Name Skylake Max TDP | 65.0 W
Package Socket 1151 LGA
Technology | 14nm Core Voltage 1.376 V
Specification Intel(R) Core(TM) i3-6100 CPU @ 3.70GHz
Family 6 Model E Stepping 3
Ext. Family 6 Ext. Model 5E Revision RO

Instructions |MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, EM&4T, VT,
AES, AVX, AVX2, FMA3

Clocks (Core #0) Cache

Core Speed 4439.81 MHz L1Data 2 x 32 KBytes 8-way
Multiplier | x 37.0 (8-37) LiInst. | 2x 32KBytes 8-way
Bus Speed 120.00 MHz Level 2 | 2x 256 KBytes 4-way

3 MBytes - 12-way

Selection |Processor £1 Cores | 2 Threads | 4

=2 Ver. 1.76.0.x64 __Tools T=yeagglidate J _ Closa
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Asymmetric Multiprocessor (AMP)

o Offer a large performance-energy trade-off space
O Big Core O Small Core

Frequency
Levels /§'

;

00O

Performance

Energy Consumption
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Asymmetric Chip-Multiprocessor (ACMP)

¢ Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

Four-core CPU

Two high-performance cores

Two high-efficiency cores

17



Today

* Hardware support of threads

e Cache coherence

18



The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.
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The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

* Each read should receive the value last written by anyone

e Basic question: If multiple cores access the same data, how do they
ensure they all see a consistent state?

Thread 0 Thread 1
Mem[A] = 1 v

Print Mem[A]

19



The Issue

e Without cache, the issue is (theoretically) solvable by using mutex.

e ...because there is only one copy of x in the entire system. Accesses
to x in memory are serialized by mutex.

Write: x=1000 @ @ Read: X
[ Bus ]

. 1000
Main Memory

20



The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

e

« 1000
Main Memory
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© ©-

1000 e

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

1000 e 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

2000 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: X |
x=Xx+1000 Read: x
Write: x | | Read: x Should not

return 1000!

2000 jmm— 1000 prmmmeet

e

X 1000
Main Memory

21



Cache Coherence: The Idea

¢ Issue: there are multiple copies of the same data in the system,
and they could have different values at the same time.
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Cache Coherence: The Idea

¢ Issue: there are multiple copies of the same data in the system,
and they could have different values at the same time.
¢ ldea: ensure multiple copies have same value, i.e., coherent
* How? Two options:
e Update: push new value to all copies (in other caches)
 Invalidate: invalidate other copies (in other caches)

22



Readings: Cache Coherence

e Most helpful
e Culler and Singh, Parallel Computer Architecture
e Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)
e Patterson&Hennessy, Computer Organization and Design
e Chapter 5.8 (pp 534 — 538 in 4t and 4th revised eds.)
e Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

e Also very useful
* Censier and Feautrier, “A new solution to coherence problems in multicache
systems,” |IEEE Trans. Computers, 1978.
e Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
e | audon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.

e Martin et al, “Token coherence: decoupling performance and correctness,” ISCA
2008.

e Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”
ISCA 1988.

23



Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
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* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
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Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
e Classic example: TLB
* Hardware does not guarantee that TLBs of different core are coherent

* ISA provides instructions for OS to flush PTEs
e Called “TLB shootdown”

24



Today

* Power consumption and dark silicon
e GPU
e Accelerators

25



Dynamic Power
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Dynamic Power

T Vad

Ty

Vdd

v(t)

t0
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Dynamic Power

T Vad Vdd -

{ N -\ v(t)

t0 tl

E,, = [ P@ydt=[ (V,,—v)-ie)dt =[ (V=) c(dv/dt)dt =

=cV,, tldv—crlv -dv = chd2 —1/2cha,2 =
! +

1/2¢V,
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Dynamic Power

T Vad Vdd -

—C |
t0 tl

|

Energy dissipated for every transition (0->1 or 1->0)

E,=| "P(t)dt = [ "W, —v)-i(t)dt = [ "W, —v)-c(dv/dt)dt =

t t
=cV,, t dv —cJ.

0

vody= chd2 —1/2cha,2 =1/2 cVa,a,2
f
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Dynamic Power

T Vad Vdd -

— o

—C |
t0 tl

|

Average dynamic power of a transistor:
P=a-(E/T)=a-Ef=%aCV,j2f

a: switch activity factor. No switching, no dynamic power consumption
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Dynamic Power

P=kCV2f

e |[ncreasing f requires V to be increased proportionally

* Intuitively: a higher frequency means a shorter cycle time, which
means the critical path of your processor needs to be shorter, which
requires faster transistors, which you get by increasing the voltage

» “Overclocking” just increases the clock speed without increasing

voltage => machine might crash (cycle time shorter than the critical
path delay)

 Corollary: reducing voltage requires reducing frequency
* 15% reduction in voltage requires about 15% slow down in frequency

* \What’s the impact on dynamic power? 0.853 =~ 60% -> 40% dynamic
power reduction.
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Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
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Dynamic Power Favors Parallelisms

P=KkCf

e Dynamic power favors parallel processing over higher clock rate
* Jake a core and replicate it 4 times: 4x speedup & 4x power

* Jake a core and clock it 4 times faster: 4x speedup but 64x
dynamic power!

e Another way to think about this

* |f atask can be perfectly parallelized by 4 cores, we can
reduce the clock frequency of each core to 1/4 while retaining
the same performance

e Dynamic power becomes 4 x (1/4)3 = 1/16
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Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year
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* Gordon Moore in 1965 predicted that the number of transistors
doubles every year
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Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e In 1975 he revised the prediction to doubling every 2 years
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Moore’s Law

* Gordon Moore in 1965 predicted that the number of transistors
doubles every year

e In 1975 he revised the prediction to doubling every 2 years

e Today’s widely-known Moore’s Law: number of transistors double
about every 18 months (Moore never used the number 18...)
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Moore’s Law

16-Core SPARC T3
Six-Core Core i7
Six-Core Xeon 7400

2,600,000,000 ] @10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ @ g oocrje W$&7
AMD K10 +«—Quad-core 2196 .
1,000,000,000 POWERG @7g, %, = 8.Core Xoon NehalomEX.
Itanium 2 with 9MB cache ® " Six-Core Opteron 2400
AM Core i7 (Quad)
2Di
Itanium 2 @ gg"'e ue
100,000,000
Pentium 4 @ Barton @ Atom
AMD K7
@ AMD K6-lil
— AMD K6
= 1 0,000,000 ] @ Pentium Il
8 Pentium Il
(&) @®AMD K5
— Pentium
O
D
‘B 1,000,000 -
C
g
|_
100,000 -
10,000
8080
3
5 is ®MOS 6502
2, 00 - 4004.?:R:A 1802
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€o
8

31



Dennard Scaling

Vs Gate Vs Vp

Source Drain

Z 2 ~

L

p-type doped Si

Body é Ve

Scale factor a<1
o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.



De n n ard Scal i n g Parameter Value ([Scaled
Value
Dopant Na, Nd |Na/a, Nd/
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Dennard Scaling

Vs Gate Vs Vp

Source Drain

2 ~

L

p-type doped Si

Body é Ve

Scale factor o<1

o =0.7=>2X more transistors!

Design of lon-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled
Value
Dopant Na, Nd |Na/a, Nd/
concentrations a
Dimensions L, W, alL, aWw,
Tox alox
Field E E
Voltage V aVv
Capacitance C aC
Current I al
Transistors/Area |d d/o2
Propagation time |t at
(~CV/)
Frequency (1/t) f f/a
Power (CV2) P a2P
Power/area Pd Pd

(Power density)
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Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.
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Implications of Dennard Scaling and Moore’s Law

* Each new processor generation can have more transistors
(Moore’s Law), and will run at higher frequency but won’t
consume more power under the same area budget.

e More transistors means better microarchitecture, which leads to
better performance even under the same frequency.

* Higher frequency means better performance even under the
same microarchitecture.

* QOverall, software gets a free ride: wait for the next generation of
hardware and performance will naturally increase without
consuming more power.

Moore’s law gave us more transistors;

Dennard scaling made them useful.
Bob Colwell, DAC 2013, June 4, 2013
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2005: End of Dennard Scaling

e \What Happened?

e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
o Remember Power = CV2f
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* There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).

* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling
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2005: End of Dennard Scaling

e \What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
« Remembe 6

Source: P. Packan (Intel),

e Why? o |oge BB 2007 IEDM Short Course
e Thereis a o > need to
switchati o * \
* Vin Stoppe § 3 ariation

becomes , | Gate Overdrive R g
Voo— Vr \

1

.\M"—O—O—a—o

14 10 8 6 .35 .25 18 .13 .09 .065
Technology Generation
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2005: End of Dennard Scaling

e \What Happened?
e Supply voltage Vaq stops scaling (Can’t drop voltage below ~1 V)
« Remember Power = CVaf
e Why?
* There is a fundamental limit as to how much voltage we need to
switch a transistor, called threshold voltage (Vin).
* Vin stopped scaling because leakage power/reliability/variation
becomes huge issues, and accordingly Vaq stops scaling
e The demise of Dennard Scaling means the power density
(power consumption per unit area) will increase rather than
staying stable.
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2005: End of Dennard Scaling

Power Density
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Dark Silicon
n. [dark, sil'I-ken, -kon’]
More transistors on chip (due to Moore’s Law), but a growing

fraction cannot actually be used due to power limits (due to the
end of Dennard Scaling).
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2005: End of Dennard Scaling

* |nitial response has been to lower frequency and increase cores / chip
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2005: End of Dennard Scaling

* Initial response has been to lower frequency and increase cores / chip

7
10 r Transistors
{ (thousands)
6|
10|
5 |
10" |
: Single-thread
4 | Performance
10 : (SpecINT)
3|
10 |
2 | Typical Power
10 (Watts)
1 : Number of
10 b Cores
o
10 |
1975 1980 1985 1990 1995 2000 2005 2010 2015
Original data collected and piotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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2005: End of Dennard Scaling

* |nitial response has been to lower frequency and increase cores / chip

« There is a limit to core scaling. Why?

10’

4

10° |

10°

10* |

Transistors
(thousands)

Single-thread
Performance
(SpecINT)

Typical Power
(Watts)

Number of
Cores

1975 1980 1985 1990 1995 2000 2005 2010 2015

Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten
Dotted line extrapolations by C. Moore
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2007: A Revolutionary New Computer
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’ OPINION

No Moore’s Law for batteries

Fred Schlachter’

American Physical Society, Washington, DC 20045

The public has become accustomed to
rapid progress in mobile phone technol-
ogy, computers, and access to information;
tablet computers, smart phones, and other
powerful new devices are familiar to most
people on the planet.

These developments are due in part to the
ongoing exponential increase in computer
processing power, doubling approximately
every 2 years for the past several decades.
This pattern is usually called Moore’s Law
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling
prophecy. Unfortunately, much of the
public has come to expect that all technol-
ogy does, will, or should follow such a law,
which is not consistent with our everyday
observations: For example, the maximum

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be
made on processors. Batteries are not like
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do
anodes, cathodes, and electrolytes. A D-cell
battery stores more energy than an AA-cell.
Potentials in a battery are dictated by the
relevant chemical reactions, thus limiting
eventual battery performance. Significant
improvement in battery capacity can only
be made by changing to a different chem-
istry.

Scientists and battery experts, who have
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
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“Improving” Energy Capacity

600 smartphone from 2006 to 2014 on http://www.gsmarena.com/makers.php3
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“Improving” Energy Capacity

SMARTPHONE PHABLET TABLET
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“Improving” Energy Capacity




Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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Sources of Energy-Inefficiencies

General-Purpose CPU = Instruction Delivery + Data Feeding + Execution +
Control, where instruction delivery, data feeding & control are pure overhead

L~

Pure Overhead
IF: Instruction fetch

Ctrl: Other control logics
Pipe: Pipeline reg, bus, clock
D$: Data cache

RF: Register file

ALU: Functional units

Doing Actual Work

Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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Computation vs. Data Movement

Data movement energy >> computation energy

64-bit DP DRAM
20p. 256p) 16 n) N )\

256-bit buses

Efficient
200P M otf.chip link

256-bit access
8 kB SRAM

Challenges for future computing systems, Bill Dally, 2015
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Computation vs. Data Movement

Data movement energy >> computation energy

Normalized Energy
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SIMD

* Single Instruction (operating on) Multiple Data

e Amortizing the cost of instruction delivery/
control across many execution units (even
cores).

e Almost all modern ISAs provide such
instructions:

e x86: MMX/SSE/AVX
* Arm: Neon

Scalar Process Vector Process (N=8)

|bo[b1|b2|b3|b4|bS|b6[b7| |cOfci|c2|c3|c4|cS|c6(c7|

[ao|ai]a2|a3|a4|aS|a6|a7|

4 instructions 1 instruction
elements 8 elements (AVX)
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Graphics Processing Units/GPUs (SIMT)

* Designed for graphics rendering, which is massively parallel.

3D Application

or Game
3D API
Commands
y
3D APL: - - - = - -
wencLor | Graphics rendering pipeline based on rasterization
CPU - GPU Boundary
GPU
Assembled
Command & Polygons, Pixel
Data Stream" Vertex Index Lines, and Location Pixel
GPU Stream Points Stream Updates
Front 4| Primitive .| Rasterization & Raster
End "| Assembly "| Interpolation "| Operation
s
Pre-transformed
Vertices i
Same program Transformed Pre-traRr?sSft(frrrlrfgg Transformed
for all vertices Vertiees Fragments Fragments
P’°9\;:rr:‘£ab'e Programmable Same program
Fragment
Processor

Fragment - b=~ for all pixels

© David Kirk/NVIDIA and
Wen-mei W. Hwu, 2007
ECE 498AL, University of lllinois,
Urbana-Champaign ' Computer Architecture
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Execute shader

<Al

Kayvon Fatahali%SBZN: Principles of Computer Architecture

!

<diffuseShader>:

sample ro, v4, to, so

mul
madd
madd
clmp
mul
mul
mul

mov

r3,
r3,
r3,
r3,
00,
ol,
02,

03,

vo, cbo[o]

vl, cbe[1], r3

v2, cbe[2], r3

r3, 1(e.e), 1(1.0)
ro, r3

rl, r3

r2, r3

1(1.0)

!

Kayvon Fatahalian, 2008

15

15
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23

TWO cores (two fragments in parallel)

fragment 1 fragment 2

!

<diffuseShader>:

!

<diffuseShader>:
sample ro, v4, t0, so

mul r3, ve, cbe[e]
madd r3, vi, cbe[1], r3

sample ro, v4, to, so
mul r3, vo, cbe[0]

madd r3, vi, cbe[1], r3
madd r3, v2, cbe[2], r3

madd r3, v2, cbe[2], r3
clmp r3, r3, 1(0.0), 1(1.0)

clmp r3, r3, 1(0.0), 1(1.0)

mul 00, re, r3

mul 0@, re, r3
mul o1, ri, r3 mul o1, ri, r3

5 1,
mul o2, r2, r3

mul o2, r2, r3
mov 03, 1(1.0)

mov 03, 1(1.0)

!

<Al

. . 23
Kayvon Fataha“%SBZN: Principles of Computer Architecture Kayvon Fatahallan, 2008



Four cores

«

«

Me

)
'

2
J
Al

Kayvon Fatahaligf3gon: principles of ¢

8-

(four fragments in parallel)

omputer Architecture

Kayvon Fatahalian, 2008

24
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Sixteen cores

<Al

Kayvon Fataha”%sszn: Principles of Computer Architecture

(sixteen fragments in parallel)

QO O O O
[
A
e o @ 0
QO O O O
A
+ 3 3 3
e & @& &
QO O O O
A
+ 3 3 3
o @ @ O
QO O O O
TPy 3
+ 3 3 3
e &8 0 @

16 cores = 1

25

B | B |
ALU ALU ALU ALU
T | N |
| ALU | | ALU l | ALU ' | ALU |
[ i — [ e
| ALU | | ALU ' | ALU ' | ALU I
[ i — N |
| ALU l | ALU l | ALU ' | ALU I
mm
6 simultaneous instruction streams

Kayvon Fatahalian, 2008
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Instruction stream coherence

«(] | B« <]
«(] | Me <]
«(] | B <]
(] | Me <]

0«
Ne
B
LK

Be «] | e «)
Be «] | B <«
e «] | B <«
Be <« | Me «)

< Al

Kayvon Fataha“%.’sSZN: Principles of Computer Architecture

26

But... many fragments should
be able to share an instruction

stream!

<diffuseShader>:

sample ro, v4, to, so

mul

madd r3,
madd r3,
clmp r3,

mul
mul
mul

mov

r3,

00,
ol,
02,
o3,

vo,
vl,
v2,
r3,
roe,
rl,
r2,

cbo[0]

cbo[1], r3
cbo[2], r3
1(0.0), 1(1.0)
r3

r3

r3

1(1.0)

51
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Amortize cost/complexity of
managing an instruction
stream across many ALUs

SIMD processing

Al

) 28
Kayvon Fataha“aﬁssZN: Principles of Computer Architecture Kayvon Fatahalian, 2008
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SIMD/vector instructions, each operates on a vector of 8 elements here.

ENIEEREY

sl )]

!

vec_vo,
vec_vil,
VEC8_madd _ vec_v2,
VEC8_clmp _ vec_r3,
VEC8_mul  ( vec_ro,
VEC8_mul vec_ri,
vec_r2,

1(1.0)

~ Al

cbo[0]
cbo[1], vec_r3
cbo[2], vec_r3
1(0.0), 1(1.0)
vec_r3
vec_r3

vec_r3

KayVDn Fataha”aﬁ%ZN: Principles of Computer Architecture Kayvon Fatahalian, 2008
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16 cores, each with 8 ALUs. Each core here runs the same

program (fragment shader)

0000 0000 0000 0000

0000 O0O00 o000 0000 0/ | /2 0/ |

1 1 1 1 oooo | |ooon | | oooo | oooo
I | [ [ Y o [ o [ o [ [ Y o [ o [ o [
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< Al

16 cores = 128 ALUs

= 16 simultaneous instruction streams

Kayvon Fataha”%?;SZN: Principles of Computer Architecture

Kayvon Fatahalian, 2008
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16 cores, each with 8 ALUs. Cores here run different programs
(some are processing vertices, some are processing fragments)

primitives EH_I‘ EE'_H HH EH-H
verices |HEEH] FHEFH| [FEEH] [FEEH
fragments 5E|_;E| EEI-HE] HH EH-EH

< Al

. . 33
KayVon Fataha'@%sszn: Principles of Computer Architecture Kayvon Fatahallan, 2008



Each Core Does Fine-Grained Multi-threading

Warp: a group of
threads (8 here)

Warp 3, instruction 60

IRRRARRRRRRRAARA

Warp 3, instruction 61

IRRRARRRARRRRRRN

No need for branch prediction and out-of-order execution.
Time Simple core design. Each thread has its own set of
'\~ registers in hardware to minimize context switch overhead.

~
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2 Kayvon Fatahalian, 2008
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Nvidia Maxwell GPU (2014)

* Today: General Purpose GPU (GPGPU), used for any massive
parallel applications:
* Physics simulation

* Deep learning
* Computer vision
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Nvidia Maxwell GPU (2014)

* Today: General Purpose GPU (GPGPU), used for any massive

parallel applications:
NVIDIA Corporation
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