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Announcements
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• Assignment 5 due April 21.
• Will release assignment 4 grades soon.

Today
Due

Last Lecture
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Fine-Grained Switching
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•One big bonus of fine-grained switching: no need for 
branch predictor!!
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•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
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Fine-Grained Switching

!5

•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.
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Thread Switching
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•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have 

it in order to support many threads with limited resources
•What does thread switching do?

Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread)

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)



Carnegie Mellon

Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have 
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• Save the context for the old thread, and restore the context of the 

new thread
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Thread Switching

!7

•A perhaps not great analogy: yellow traffic light
•Context switching is pure overhead, but you have to have 

it in order to support many threads with limited resources
•What does thread switching do?
• Save the context for the old thread, and restore the context of the 

new thread
•How do you implement thread context switching?
• Save/restore thread contexts in memory
• Have dedicated context for each thread (e.g., each thread has a 

dedicated register file)
• Lots of hardware resources, but is a must if we want to support 

a lot of threads.
• GPU does this (later).
• CPU does this for a limited number of threads (hyper-threading, 

later).



Carnegie Mellon

Multi-threading Illustration (so far…)

!8

Thread 1
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Coarse-
grained MT

Fine-grained MT 
without hw support

Thread 3

Fine-grained MT 
with hw support

Cycle
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Multi-threading Illustration (so far…)

!8

Thread 1

Context 
Switch

Thread 2

Coarse-
grained MT

Fine-grained MT 
without hw support

Thread 3

Fine-grained MT 
with hw support

Cycle
Why these 
empty slots?
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Modern Single-Core: Superscalar
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Instruction Control

Registers

Instruction 
Decoder

Instruction 
queue

Instruction 
Cache

PC

Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store Data Cache

• Typically has multiple function units to allow for decoding and 
issuing multiple instructions at the same time


• Called “Superscalar”
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From Scalar to Multi-Scalar Multi-threading
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Thread 1

Context 
Switch

Thread 2
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From Scalar to Multi-Scalar Multi-threading
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Functional Units

Thread 1

Context 
Switch

Thread 2
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Functional Units
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Int
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FP 
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Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction 

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A
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Simultaneous Multi-Threading (SMT)
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Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel call it hyper-threading.

• Replicate enough hardware structures to process K instruction 

streams, i.e., threads. K copies of all registers. Share functional units.

• SMT = Superscalar + Multi-threading

Reg A Instruction queue

PC A
Reg B Instruction queue

PC B
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Switch
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Coarse-grained MT on 
a superscalar core SMT

Thread 3

Thread 4

Can now make use 
of idle issue slots in 
conventional MT 
cores.
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Thread 1

Context 
Switch

Thread 2

Coarse-grained MT on 
a superscalar core SMT

Multiple threads 
actually execute in 
parallel (even with 
one single core)

Thread 3

Thread 4

Can now make use 
of idle issue slots in 
conventional MT 
cores.
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Conventional Multi-threading vs. Hyper-threading
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Thread 1

Context 
Switch

Thread 2

Coarse-grained MT on 
a superscalar core SMT

Multiple threads 
actually execute in 
parallel (even with 
one single core)

No/little context 
switch overhead

Thread 3

Thread 4

Can now make use 
of idle issue slots in 
conventional MT 
cores.



Carnegie Mellon

Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence

!13
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Multi-Threading on a Multi-core Processor

• Each core can run 
multiple threads, mostly 
through coarse-grained 
switching.


• Fine-grained switching 
on conventional multi-
core CPU is too costly.

!14

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core 0

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core n-1

…

L3 unified cache 
(shared by all cores)

Main memory
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Combine Multi-core with SMT
• Common for laptop/desktop/server machine. E.g., 2 physical 

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

!15
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Asymmetric Multiprocessor (AMP)
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• Offer a large performance-energy trade-off space
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Asymmetric Chip-Multiprocessor (ACMP)
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• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence

!18
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed 

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they 

ensure they all see a consistent state?

!19

Thread 0 
Mem[A] = 1

Thread 1 
…

Print Mem[A]
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The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses 

to x in memory are serialized by mutex.

!20
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x
Main Memory

1000

Bus

Write: x=1000 Read: x
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The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)

!21

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000 
Write: x Read: x Should not 

return 1000!
2000



Carnegie Mellon
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Cache Coherence: The Idea
• Issue: there are multiple copies of the same data in the system, 

and they could have different values at the same time.
• Idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

!22
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Readings: Cache Coherence
• Most helpful


• Culler and Singh, Parallel Computer Architecture 
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

• Patterson&Hennessy, Computer Organization and Design 
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors 
with private cache memories,” ISCA 1984. 

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache 

systems,” IEEE Trans. Computers, 1978. 
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 

1997. 
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 

2003. 
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” 

ISCA 1988.

!23
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• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
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• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches.  

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB


• Hardware does not guarantee that TLBs of different core are coherent 
• ISA provides instructions for OS to flush PTEs 
• Called “TLB shootdown”

!24
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Today
• Power consumption and dark silicon

• GPU

• Accelerators

!25



Dynamic Power

!26

v

C

Vdd



Dynamic Power

!26

v

C

Vdd



Dynamic Power

!26

v

C

Vdd



Dynamic Power

!26

Energy dissipated for every transition (0->1 or 1->0)

v
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Vdd
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v

C

Vdd

Average dynamic power of a transistor: 
P = α • (E / T) = α • E f = ½ α C Vdd

2 f

α: switch activity factor. No switching, no dynamic power consumption
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Dynamic Power

P = k C V2 f
• Increasing f requires V to be increased proportionally

• Intuitively: a higher frequency means a shorter cycle time, which 
means the critical path of your processor needs to be shorter, which 
requires faster transistors, which you get by increasing the voltage

• “Overclocking” just increases the clock speed without increasing 
voltage => machine might crash (cycle time shorter than the critical 
path delay)

• Corollary: reducing voltage requires reducing frequency 
• 15% reduction in voltage requires about 15% slow down in frequency
• What’s the impact on dynamic power? 0.853 ≈ 60% -> 40% dynamic 

power reduction.

!28
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• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x 

dynamic power!
• Another way to think about this
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Dynamic Power Favors Parallelisms

• Dynamic power favors parallel processing over higher clock rate
• Take a core and replicate it 4 times: 4x speedup & 4x power
• Take a core and clock it 4 times faster: 4x speedup but 64x 

dynamic power!
• Another way to think about this

• If a task can be perfectly parallelized by 4 cores, we can 
reduce the clock frequency of each core to 1/4 while retaining 
the same performance

• Dynamic power becomes 4 x (1/4)3 = 1/16

!29

P = k C f3
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• Gordon Moore in 1965 predicted that the number of transistors 
doubles every year

• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors double 

about every 18 months (Moore never used the number 18…)



Moore’s Law

!31



!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Scale factor α<1 
α = 0.7 => 2X more transistors!

Dennard Scaling



!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled 
Value

Dopant 
concentrations
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!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled 
Value

Dopant 
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W, 
Tox

αL, αW, 
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1 
α = 0.7 => 2X more transistors!

Propagation time 
(~CV/I)

t αt

Frequency (1/t) f f/α

Transistors/Area d d/α2

}

Dennard Scaling



!32Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions. Proc. of IEEE. Dennart et al. 1974.

Parameter Value Scaled 
Value

Dopant 
concentrations

Na, Nd Na/α, Nd/
α

Dimensions L, W, 
Tox

αL, αW, 
αTox

Field Ε Ε
Voltage V αV
Capacitance C αC
Current I αI

Scale factor α<1 
α = 0.7 => 2X more transistors!

Propagation time 
(~CV/I)

t αt

Frequency (1/t) f f/α

Power (CV2f) P α2P
Power/area 
(Power density)

Pd Pd

Transistors/Area d d/α2

}

Dennard Scaling



Implications of Dennard Scaling and Moore’s Law

• Each new processor generation can have more transistors 
(Moore’s Law), and will run at higher frequency but won’t 
consume more power under the same area budget.
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Moore’s law gave us more transistors;

Dennard scaling made them useful.


Bob Colwell, DAC 2013, June 4, 2013
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2005: End of Dennard Scaling

•What Happened?

• Supply voltage Vdd stops scaling (Can’t drop voltage below ~1 V) 
• Remember Power = CV2f

•Why?

• There is a fundamental limit as to how much voltage we need to 

switch a transistor, called threshold voltage (Vth). 
• Vth stopped scaling because leakage power/reliability/variation 

becomes huge issues, and accordingly Vdd stops scaling
• The demise of Dennard Scaling means the power density 

(power consumption per unit area) will increase rather than 
staying stable.

!34



2005: End of Dennard Scaling

!35



2005: End of Dennard Scaling

!35



2005: End of Dennard Scaling

!35

Hot
Plate



2005: End of Dennard Scaling

!35

Nuclear
Reactor

Hot
Plate



2005: End of Dennard Scaling

!35

Sun
Surface
(~104)

Nuclear
Reactor

Hot
Plate



Dark Silicon 
n. [därk, sĭl′ĭ-kən, -kŏn′] 
More transistors on chip (due to Moore’s Law), but a growing 
fraction cannot actually be used due to power limits (due to the 
end of Dennard Scaling).
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2005: End of Dennard Scaling
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• Initial response has been to lower frequency and increase cores / chip
• There is a limit to core scaling. Why?



2007: A Revolutionary New Computer
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No Moore’s Law for batteries
Fred Schlachter1

American Physical Society, Washington, DC 20045

The public has become accustomed to 
rapid progress in mobile phone technol-
ogy, computers, and access to information; 
tablet computers, smart phones, and other 
powerful new devices are familiar to most 
people on the planet. 

These developments are due in part to the 
ongoing exponential increase in computer 
processing power, doubling approximately 
every 2 years for the past several decades. 
This pattern is usually called Moore’s Law 
and is named for Gordon Moore, a co-
founder of Intel. The law is not a law like 
that for gravity; it is an empirical obser-
vation, which has become a self-fulfilling 
prophecy. Unfortunately, much of the 
public has come to expect that all technol-
ogy does, will, or should follow such a law, 
which is not consistent with our everyday 
observations: For example, the maximum 
speed of cars, planes, or ships does not in-
crease exponentially; maximum speed bare-
ly increases at all.

Cars require a portable fuel, preferably 
one that is widely available, low in cost, 
and with a high energy density. Gasoline 
is nature’s ideal fuel. A full tank of gasoline 
contains as much energy as 1,000 sticks of 
dynamite. However, cost, national security, 
global climate change, and pollution lead 
to a national need to wean ourselves from 
powering cars with gasoline. There are not 
many alternate candidates. Natural gas is 
still a fossil fuel, and hydrogen can pres-
ently be produced only at a high energy cost 
and has low energy density. And then there 
is electricity. We power our mobile phones 
and our laptops with lithium-ion batter-
ies—why not power our cars this way? We 
already have an infrastructure for generat-
ing and distributing electricity. If only we 
had batteries that could store enough ener-
gy to power a car several hundred kilome-
ters and that were not too heavy and would 
not cost a fortune.

Sadly, such batteries do not exist. There 
is no Moore’s Law for batteries. The reason 

there is a Moore’s Law for computer pro-
cessors is that electrons are small and they 
do not take up space on a chip. Chip per-
formance is limited by the lithography tech-
nology used to fabricate the chips; as lithog-
raphy improves ever smaller features can be 
made on processors. Batteries are not like 
this. Ions, which transfer charge in batter-
ies, are large, and they take up space, as do 
anodes, cathodes, and electrolytes. A D-cell 
battery stores more energy than an AA-cell. 
Potentials in a battery are dictated by the 
relevant chemical reactions, thus limiting 
eventual battery performance. Significant 
improvement in battery capacity can only 
be made by changing to a different chem-
istry.

Scientists and battery experts, who have 
been optimistic in the recent past about im-
proving lithium-ion batteries and about de-
veloping new battery chemistries—lithium/
air and lithium/sulfur are the leading can-
didates—are considerably less optimistic 
now. Improvement in energy storage den-
sity of lithium-ion batteries has been only 
incremental for the past decade. A large-
scale research consortium (the Joint Center 
for Energy Storage Research) has been cre-
ated with an ambitious goal of improving 
energy storage density by a factor of five 
and reducing cost by a factor of five in 5 
years. This can only happen if there is a ter-
rific, wonderful, and amazing breakthrough 
in battery technology. One can only hope.

In addition to increased performance 
and lower cost, batteries need to be safe. Of 
course gasoline is not safe, there are hun-
dreds of thousands of car fires every year in 
the United States. Nonetheless, the public 
is more wary of electricity than of gasoline, 
and the recent safety issues of lithium-ion 
batteries on Boeing 787 aircraft have done 
little to reassure the public about the safety 
of such batteries. Consumers are question-
ing the practice of putting into cars batter-
ies that can burst into flames.

Meanwhile, while waiting for a wonderful 

breakthrough in battery technology, we do 
have a valuable and underutilized resource: 
energy efficiency, which in many cases is 
free or even has a negative cost. Cars can 
be made more energy efficient by reducing 
size, weight, and power. Incentives to re-
duce vehicle miles driven can be made by 
improving access to public transit. There 
are policy and financial incentives to driv-
ing less, such as higher taxes on gasoline to 
investments in the public transportation 
infrastructure. 

Improving the energy efficiency of cars 
is not a long-term solution to the problems 
related to combustion of fossil fuels, as cars 
will still be powered by gasoline. However, 
improved energy efficiency can happen and 
is happening. A good example of improved 
energy efficiency is hybrid cars, which can 
be considerably more energy efficient than 
traditional cars. We must take this prag-
matic direction while awaiting that terrific 
breakthrough in battery technology we all 
so desire.

Author contributions: F.S. wrote the paper.

The author declares no conflict of interest.
1E-mail: fsschlachter@gmail.com.

Fred Schlachter.
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Sources of Energy-Inefficiencies
General-Purpose CPU = Instruction Delivery + Data Feeding + Execution + 
Control, where instruction delivery, data feeding & control are pure overhead

!42
Understanding sources of inefficiency in general-purpose chips, Hameed et al., ISCA 2010
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Computation vs. Data Movement
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ALU

RF

Ctrl

Pipe
D$

IF

64-bit DP 
20pJ 26 pJ 256 pJ 

1 nJ 

500 pJ Efficient 
off-chip link 

256-bit buses 

16 nJ 
DRAM 
Rd/Wr 

256-bit access 
8 kB SRAM 50 pJ 

20mm 

Communication Dominates Arithmetic 

Challenges for future computing systems, Bill Dally, 2015

Data movement energy >> computation energy
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SIMD
• Single Instruction (operating on) Multiple Data

• Amortizing the cost of instruction delivery/

control across many execution units (even 
cores).


• Almost all modern ISAs provide such 
instructions:


• x86: MMX/SSE/AVX 
• Arm: Neon

!45
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Graphics Processing Units/GPUs (SIMT)
• Designed for graphics rendering, which is massively parallel.

!46

N
EE382N: Principles of Computer Architecture

3Adding Programmability to the 
Graphics Pipeline

3D Application
or Game

3D API:
OpenGL or 
Direct3D

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization & 
Interpolation

3D API 
Commands

Transformed 
Vertices

Assembled 
Polygons, 
Lines, and 

Points

GPU 
Command & 

Data  Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operation

s

Framebuffer

Pixel 
UpdatesGPU

Front 
End

Pre-transformed 
Vertices

Vertex Index 
Stream

Pixel 
Location 
Stream

CPU – GPU Boundary

© David Kirk/NVIDIA and 
Wen-mei W. Hwu, 2007

ECE 498AL, University of Illinois, 
Urbana-Champaign

Graphics rendering pipeline based on rasterization

Same program

for all vertices

Same program

for all pixels
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15Execute shader

15

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul  r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul  o0, r0, r3

mul  o1, r1, r3

mul  o2, r2, r3

mov  o3, l(1.0)

Kayvon Fatahalian, 2008Kayvon Fatahalian
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23Two cores   (two fragments in parallel)

23

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 1

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

fragment 2

Kayvon Fatahalian, 2008Kayvon Fatahalian
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24Four cores   (four fragments in parallel)

24

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

ALU
(Execute)

Fetch/
Decode

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian
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25Sixteen cores   (sixteen fragments in parallel)

25

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

ALU ALU

ALUALU

16 cores = 16 simultaneous instruction streams

Kayvon Fatahalian, 2008Kayvon Fatahalian
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26Instruction stream coherence

26

<diffuseShader>:

sample r0, v4, t0, s0

mul r3, v0, cb0[0]

madd r3, v1, cb0[1], r3

madd r3, v2, cb0[2], r3

clmp r3, r3, l(0.0), l(1.0)

mul o0, r0, r3

mul o1, r1, r3

mul o2, r2, r3

mov o3, l(1.0)

But… many fragments should
be able to share an instruction
stream! 

Kayvon Fatahalian, 2008Kayvon Fatahalian
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28Add ALUs

28

Fetch/
Decode

Idea #2:

Amortize cost/complexity of
managing an instruction
stream across many ALUs

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

SIMD processingCtx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

Kayvon Fatahalian, 2008Kayvon Fatahalian �52
N

EE382N: Principles of Computer Architecture

27Recall: simple processing core

27

Fetch/
Decode

ALU
(Execute)

Execution
Context

Kayvon Fatahalian, 2008Kayvon Fatahalian
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31Modifying the shader

31

Fetch/
Decode

<VEC8_diffuseShader>:

VEC8_sample vec_r0, vec_v4, t0, vec_s0

VEC8_mul  vec_r3, vec_v0, cb0[0]

VEC8_madd vec_r3, vec_v1, cb0[1], vec_r3

VEC8_madd vec_r3, vec_v2, cb0[2], vec_r3

VEC8_clmp vec_r3, vec_r3, l(0.0), l(1.0)

VEC8_mul  vec_o0, vec_r0, vec_r3

VEC8_mul  vec_o1, vec_r1, vec_r3

VEC8_mul  vec_o2, vec_r2, vec_r3

VEC8_mov  vec_o3, l(1.0)

Ctx Ctx Ctx Ctx

Ctx Ctx Ctx Ctx

Shared Ctx Data 

2 31 4

6 75 8

ALU 1 ALU 2 ALU 3 ALU 4

ALU 5 ALU 6 ALU 7 ALU 8

Kayvon Fatahalian, 2008Kayvon Fatahalian

SIMD/vector instructions, each operates on a vector of 8 elements here.



�54

16 cores, each with 8 ALUs. Each core here runs the same 
program (fragment shader)

N
EE382N: Principles of Computer Architecture

32128 fragments in parallel 

32
= 16 simultaneous instruction streams

16 cores = 128 ALUs

Kayvon Fatahalian, 2008Kayvon Fatahalian
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16 cores, each with 8 ALUs. Cores here run different programs 
(some are processing vertices, some are processing fragments)

N
EE382N: Principles of Computer Architecture

33128 [                       ] in parallel 

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian



Each Core Does Fine-Grained Multi-threading
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N
EE382N: Principles of Computer Architecture

33128 [                       ] in parallel 

33

vertices / fragments
primitives

CUDA threads
OpenCL work items

compute shader threads

primitives

vertices

fragments

Kayvon Fatahalian, 2008Kayvon Fatahalian

Warp: a group of 
threads (8 here)

No need for branch prediction and out-of-order execution. 
Simple core design. Each thread has its own set of 

registers in hardware to minimize context switch overhead.
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• Today: General Purpose GPU (GPGPU), used for any massive 
parallel applications:


• Physics simulation 
• Deep learning 
• Computer vision
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