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Announcement

* Programming Assignment 1 is out

e Details: https://www.cs.rochester.edu/courses/252/
spring2022/labs/assignment.html

* Due on Jan. 30, 11:59 PM (extended)
* You have 3 slip days

Today

Due


https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html

Announcement

* Programming assignment 1 is in C language. Seek help
from TAs.

e TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.



IEEE 754 Floating Point Standard

e Single precision: 32 bits

S exp frac

1 8-bit 23-bit

e Double precision: 64 bits

S exp frac

1 11-Dbit 52-bit

* In C language
-float single precision
double double precision



Floating Pointin C 32Dt Machine

¢ Data Bits Max Value Max \_/alue
Type (Decimal)
char 8 27 - 4 107
. i short 16 215 _ 4 30767
Fixed point :
. . . . . - t _
(implicit binary point) o 32 28 = 2147483647

long 64 263 - 1 ~9.2 x 108

SP floating pOint float 32 (2-228) x 2127 ~3.4 x 1038

DP floating point double 64 (2 - 252) x 21023 ~1 8 x 10308



Floating Pointin ¢ 32-0it Machine

C Data Bits  Max Value  Max Value
Type (Decimal)
char 8 27 - 1 127
, _ short 16 215 - 1 32767
Fixed point
. . . . int 31 -
(implicit binary point) i ol R N (1 ==t
long 64 263 _ 1 ~9.2 x 1018
SP floating point float 32 (2-228)x 2127 ~3.4 x 1038
DP floating point double 64 (2 - 252) x 21023 ~1 8 x 10308

* To represent 231 in fixed-point, you need at least 32 bits
* Because fixed-point is a weighted positional representation
* |n floating-point, we directly encode the exponent

* Floating point is based on scientific notation
* Encoding 31 only needs 7 bits in the exp field



Floating Point Conversions/Casting in C

e double/float — int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN
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Floating Point Conversions/Casting in C

e double/float — int
- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN
e int @ float
- Can’t guarantee exact casting. Will round according to rounding mode

S exp frac

1 8-bit 23-bit
e int @ double

- Exact conversion

S exp

1 11-bit 52-bit
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So far in 252...

C Program

Compilerl
Assembly
Program

Assemblei

Machine
Code

int, float
if, else
Semantically ©* 7 77
Equivalent
ret, call
fadd, add
Jmp, jne
Semantically
Equival
QUIVAIENT 50001111
01010101

11110000



So farin 252...

C Program

Compileri
Assembly
Program

Assemblei

Machine
Code

Processor

!

int, float
if, else
Semantically ©* 7 77

Equivalent
G ret, call

fadd, add

, jmp, jne
Semantically

Equivalent 00001111

01010101
11110000

Fixed-point adder

(e.g., ripple carry),
Floating-point adder



So farin 252...

int, float
C Program if, else
. | Semantically ©* 7 77
Compllerl Equivalent
Assembly fad;i’ add
Program imp, jne
Semantically
Assembled, Equi
quivalent
Machine 00001111
Cod 01010101
2015 11110000
l Fixed-point adder
Processor (e.g., ripple carry),
l Floating-point adder
: NAND Gate
Transistor

NOR Gate
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So farin 252...
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Language
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Architecture
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C Program

!

Assembly
Program
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Code
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Processor
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e |SA: Software programmers’
view of a computer

* Provide all info for someone wants
to write assembly/machine code

* “Contract” between assembly/
machine code and processor



So farin 252...

High-Level C Program * |SA: Software programmers’
Language l view of a computer
* Provide all info for someone wants
Assembly to write assembly/machine code
Instruction Set Program * “Contract” between assembly/
Architecture l machine code and processor
. e Processors execute machine
(ISA) Machine .
Cod code (binary). Assembly
ode program is merely a text
l representation of machine
Processor code

!

Transistor



So farin 252...

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

!

Assembly
Program

!

Machine
Code

!

Processor

!

Transistor

e |SA: Software programmers’
view of a computer

* Provide all info for someone wants
to write assembly/machine code

* “Contract” between assembly/
machine code and processor
* Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

e Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

8



This Module (4 Lectures)

High-Level
Language

Instruction Set
Architecture
(ISA)

Microarchitecture

Circuit

C Program

!

Assembly
Program

!

Machine
Code

!

Processor

!

Transistor

e Assembly Programming

e Explain how various C
constructs are implemented in
assembly code

e Effectively translating from C to
assembly program manually

* Helps us understand how
compilers work

* Helps us understand how
assemblers work

e Microarchitecture is the
topic of the next module



Today: Assembly Programming |: Basics

e Different ISAs and history behind them

10



Instruction Set Architecture



Instruction Set Architecture

e There used to be many ISAs
* x86, ARM, Power/PowerPC, Sparc, MIPS, |1A64, z
* Very consolidated today: ARM for mobile, x86 for others
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Instruction Set Architecture

e There used to be many ISAs

* x86, ARM, Power/PowerPC, Sparc, MIPS, |1A64, z

* Very consolidated today: ARM for mobile, x86 for others
e There are even more microarchitectures

* Apple/Samsung/Qualcomm have their own microarchitecture
(implementation) of the ARM ISA

* Intel and AMD have different microarchitectures for x86
e |SA is lucrative business: ARM’s Business Model
e Patent the ISA, and then license the ISA

* Every implementer pays a royalty to ARM
* Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM'’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works



https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

Intel x86 ISA

 Dominate laptop/desktop/cloud market

12



Intel x86 ISA

* Dominate laptop/desktop/cloud market

dlays Storage Support  Service

0OS X Yosemite

Version 10.10.5

Memory & GB 16004z DDR3
Graphics Intel Iris 1536 MB
Serial Number CO02NVNG6JG3QH

Systemn Report... Software Update...



Intel x86 ISA

* Dominate laptop/desktop/cloud market

dlays Storage Support  Service

0OS X Yosemite

Version 10.10.5

MacBook Pro (Retipasi
Processor 2.6 U z Intel Coge i5
Memory 8 GB 1600~z DDR3
Graphics Intel Iris 1536 MB

Serial Number CO02NVNG6JG3QH

Systemn Report... Software Update...

a=inch, Mid 2014)

dMadZon

web services

intel)

12



macOS Monterey

Version 12.0.1

MacBo16§:7inch, 2021)
Chip pple M1 Pro }
N\\Q";‘ ci:4
Serial Number VQ4GVYVNGF

Fast performance
Translated atinstall time

Dynamic translation for JITs
Transparent to user

Aside: Dynamic Binary Translation

e Apple M1 is based on the

Arm ISA. A program
compiled to x86 ISA is

dynamically translated to

Arm ISA by Rosetta.

* Not the first time Apple
plays this trick.

e

Rosetta 2

13



Aside: Dynamic Binary Translation

Circa 2006: PowerPC to x86 translation

Rosetta

Translates PowerPC to Intel




Intel x86 ISA Evolution (Milestones)

e Evolutionary design: Added more features as time goes on
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Intel x86 ISA Evolution (Milestones)

e Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Feature Notable _
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 3087

32-bit ISA (Refer to as I1A32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium I

Intel’s first attempt at 64-bit ISA (IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

15



Intel x86 ISA Evolution (Milestones)

» Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Fea

8-bi
16-I
Adc
32-|
Adc
Adc

Inte

Adc

Number of Instructions

1000
900 -
800 -
700
600 o
500 -
400 1

6 D D b PP
QﬁéP<§’dP<§’dP dpd9.§969<§>dﬁky

Year

15



Backward Compatibility

* Binary executable generated for an older processor can
execute on a newer processor

* Allows legacy code to be executed on newer machines
* Buy new machines without changing the software

e x86 is backward compatible up until 8086 (16-bit ISA)

* |.e., an 8086 binary executable can be executed on any of today’s
x86 machines

e Great for users, nasty for processor implementers
e Every instruction you put into the ISA, you are stuck with it FOREVER

16



x86 Clones: Advanced Micro Devices (AMD)

- A little bit slower, a lot cheaper

+Then AMD

- Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

- Developed x86-64, their own 64-bit x86 extension to 1A32
- Built first 1 GHz CPU

¢ |[ntel felt hard to admit mistake or that AMD was better

e 2004: Intel Announces EM64T extension to IA32
- Almost identical to x86-64!
- Today’s 64-bit x86 ISA is basically AMD’s original proposal

eHistorically
- AMD build processors for x86 ISA

17



x86 Clones: Advanced Micro Devices (AMD)

e Joday: Holding up not too badly
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x86 Clones: Advanced Micro Devices (AMD)

e Joday: Holding up not too badly

Market Summary > Intel Corporation
+ Fall
NASDAQ: NTC

62.30 usp+0.49 (0.79%) +

Feb 16,12.0% PM EST - Cisclaime:

1 day 5days 1T month £ manths YTD 1 year Jyears Max

70 44 68 LISD Dez 1, 2017

W,
50 w\/\/“/\%~ M/ \\‘ /VJJ / /JU, \/f‘

T T . T
2017 2018 2019 2020 2021
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x86 Clones: Advanced Micro Devices (AMD)

e Joday: Holding up not too badly

Market Summary > Advanced Micro Devices, Inc
; ’ ' + Fall

91.29 usD -2.48 (2.64%) +

Feb 18,12:02 PV EST - Disclammer

1 day 5days 1 month 6 months YTD 1 year 5years Max

100 4.50 USD May 27,2016

80 /”\N/ W

50 A fr"vJ

10 /W

20 /ANW
T e

b 2017 2018 2019 2020 2021
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Our Coverage

e |[A32
- The traditional x86
- 2nd edition of the textbook

* Xx86-64
- The standard
- CSUG machine
- 3rd edition of the textbook
- QOur focus

19



Moore’s Law

* More instructions typically require more transistors to implement

20



Moore’s Law

* More instructions typically require more transistors to implement
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Moore’s Law

* More instructions typically require more transistors to implement
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Moore’s Law

e More instructions require more transistors to implement
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e Gordon Moore in 1965 predicted that the number of
transistors doubles every year
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Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

* [In 1975 he revised the prediction to doubling every 2 years
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Moore’s Law

e More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year

* [In 1975 he revised the prediction to doubling every 2 years

e Today’s widely-known Moore’s Law: number of transistors
double about every 18 months

* Moore never used the number 18...

21



Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
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Moore’s Law

e Question: why is transistor count increasing but computers
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* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
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Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?

» Because transistors are becoming smaller
* ~1.4x smaller each dimension(1.42 ~ 2)
e Moore’s Law is:
* A law of physics? No
* Alaw of math? No
* A law of economy? Yes
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Moore’s Law

al'S TECHNICA

1ECH —

Transistors will stop shrinking in 2021,
- but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first prohlem has been known about for a long while. Basically, starting at arouna the 65nm
node in 2006, the economic gains from mov ng to smaller transistars have been slowly dribbling
away. Previously, moving to a smaller nede meant you could cram ons more chips onto z single
silicon wafer, at a reasonebly small price increase. With recent nodes like 22 or 14nm, though,
there are so many additional steps required that it costs a lot more to manufacture a completed
wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

22
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Transistors will stop shrinking in 2021,
but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first prohlem has been known about for a long while. Basically, starting at arouna the 65nm
node in 2006, the economic gains from mov ng to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller nede meant you could cram ons more chips onto z single
silicon wafer, at a reasonebly small price increase. With recent nodes like 22 or 14nm, though,

there are so many additional steps required that it costs a lot more to manufacture a completed

wa‘er—not to mention additional costs for things lIke package-on-package (PoP) and through-
silicon vias (TSV) packaging.
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Moore’s Law

e Question: why is transistor count increasing but computers
are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.42 ~ 2)

e Moore’s Law is:

* A law of physics? No
e Alaw of math? No
* A law of economy? Yes

* A law of psychology?
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Moore’s Law

e Question: why is transistor count increasing but computers

are becoming smaller?
* Because transistors are becoming smaller
e ~1.4x smaller each dimension(1.42 ~ 2)

e Moore’s Law is:

* A law of physics? No
e Alaw of math? No
* A law of economy? Yes

* A law of psychology? Yes



Today: Assembly Programming |: Basics

* Memory, C, assembly, machine code

23



Byte-Oriented Memory Organization

QQ. QQ.

e Data in computers are stored in “memory”
- Conceptually, envision it as a very large array of bytes: byte-addressable

* Each byte has an address
- An address is like an index into that array
- A pointer variable is a variable that stores an address

24



How Does Pointer Work in C???

char a = 4;
char b = 3;
char* c;
c = &a;
b += (*c);
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How Does Pointer Work in C???
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char b = 3;
char* c;

—p C = &a;
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How Does Pointer Work in C???

char a = 4;
char b = 3;
char* c;
cC = &a;

- b += (*c) ;

* The content of a pointer

variable is memory address.
e The ‘& operator (address-of

operator) returns the memory
address of a variable.

C Memory Memory

Variable Content Address
a 4 Ox10
b 3 Ox11
C Ox16
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How Does Pointer Work in C???

char a = 4;

char b = 3;

char* c;

c =
——% b +=

&a:
(*c) ;

* The content of a pointer
variable is memory address.

e The ‘& operator (address-of
operator) returns the memory
address of a variable.

e The “*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

C Memory Memory

Variable Content

a 4
b 3

Address

Ox10
Ox11

Ox16
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How Does Pointer Work in C???

char a = 4; C Memory Memory
char b = 3; Variable Content Address

char* c; 0x10

c = &a; b Ox11

- b += (*c);

* The content of a pointer
variable is memory address.

e The ‘& operator (address-of
operator) returns the memory C
address of a variable.

e The “*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Ox16




Assembly Code’s View of Computer: ISA



Assembly Code’s View of Computer: ISA

Assembly
Programmer’s
Perspective
of a Computer

CPU

Memory
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Perspective
of a Computer

* (Byte Addressable) Memory
e Code: instructions
» Data
» Stack to support function call

Memory
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Data
Stack
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Assembly Code’s View of Computer: ISA

Assembly L

Programmer’s
Perspective
of a Computer

* (Byte Addressable) Memory
e Code: instructions
» Data
» Stack to support function call

Memory

Code
Data
Stack

Data

0x53
0x48
0x89
0xd3
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Assembly Code’s View of Computer: ISA

Assembly CPU Memory
Programmer’s Code
Perspective Data
P Stack
of a Computer

* (Byte Addressable) Memory

« Code: instructions Code

T (Instructions) DELE

» Stack to support function call

Instruction is the fundamental

unit of work. © 0x78
All instructions are encoded as Oxfe
bits (just like data!) Oxe3

0x05



Assembly Code’s View of Computer: ISA

Assembly CPU Memory
Programmer’s Code
Perspective Data
P Stack
of a Computer

* (Byte Addressable) Memory

« Code: instructions Code

- Data (Instructions) Data | Stack
» Stack to support function call u

0x53
0x48
0x89
0xd3



Assembly Code’s View of Computer: ISA

Assembly CPU Regis’[er Memory
Programmer’s File %O?e
. dla
Perspective Stack
of a Computer

* (Byte Addressable) Memory
» Code: instructions
» Data
 Stack to support function call

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data



x86-64 Integer Register File

4 8 Bytes b

Frax %r8

srbx %r9

Ircex %rl0
srdx srll
srsi %rl2
srdi %rl3
3rsp srl4
srbp srl5

27



x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

$rax !%eax

< 8 Bytes >
< 4 Bytes >




x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
< 4 Bytes >
+—2 Bytes—

«—1B—
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
Size (Bytes) ) 4 ByteS g
char 1 2 th_ef;:
short 2
int 4
long 8

Pointer 8
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x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >
Size (Bytes) ) 4 ByteS g
1 2By
short 2
int 4

Floating point data is
long 8 stored in a separate set of
Pointer 8 register file

28



Assembly Code’s View of Computer: ISA

Assembly CPU Regis’[er Memory
Programmer’s File %O?e
. dla
Perspective Stack
of a Computer

* (Byte Addressable) Memory
» Code: instructions
» Data
 Stack to support function call

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data



Assembly Code’s View of Computer: ISA

Assembly CPU Register Memory
Programmer’s || PC Flle %Ofe
. ata
Perspective Stack
of a Computer
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
. Data of next instruction

« Stack to support function call » Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly oA Register Addresses > Memory
Programmer’s PC File %o?e
' ata
Perspective Stk
of a Computer
* (Byte Addressable) Memory * PC: Program counter
* Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call » Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly oA Register Addresses > Memory
Programmer’s PC File %o?e
' ata
Perspective
faC t Instructions Stack
Oof a Lomputer <
* (Byte Addressable) Memory * PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call » Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly oA Register Addresses > Memory
Programmer’s PC File ata %o?e
' dala
Perspective < >
faC t Instructions Stack
Or a L.omputer <
* (Byte Addressable) Memory * PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

« Stack to support function call » Called “RIP” in x86-64

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly oA Register Addresses > Memory
Programmer’s PC File Code
. Data Data
Perspective < | > St
of a Computer ALU < Instructions
* (Byte Addressable) Memory * PC: Program counter
e Code: instructions » A special register containing address
e Data of next instruction

 Called “RIP” in x86-64

e Arithmetic logic unit (ALU)
» WWhere computation happens

» Stack to support function call

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Code’s View of Computer: ISA

Assembly oA Register Addresses > Memory
Programmer’s PC Hile Code
.  Data Data
Cerspective ALU | |Condition Tt tructions Stack
of a Computer Codes | ke
* (Byte Addressable) Memory e PC: Program counter
e Code: instructions » A special register containing address
. Data of next instruction

 Called “RIP” in x86-64
e Arithmetic logic unit (ALU)
» WWhere computation happens

e Condition codes

» Store status information about most
recent arithmetic or logical operation

» Used for conditional branch

» Stack to support function call

* Register file
» Faster memory (e.g., 0.5 ns vs. 15 ns)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e ode
_  Data Data
Perspective ALU | [Condition | o ctions Sliecl<
of a Computer Codes < Heap
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Assembly CPU Register Addresses . Memory
Programmer’s PC e ode
_  Data Data
Perspective ALU | [Condition | o ctions Sliecl<
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addq %eax, %ebx

* C constructs: +, -, >>, etc.



Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e ode
_  Data Data
Perspective ALU | |Condition Tt tructions SlELCiS
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addq %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
- movqg %eax, (%ebx)
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Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC e ode
_  Data Data
Perspective ALU | |Condition Tt tructions SlELCiS
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addq %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
- movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
* Jmp, call

- C constructs: if-else, do-while, function call, etc.
30



Turning C into Object Code
C Code (sum.c)

long plus(long x, long y);

void sumstore(long x, long y,
long *dest)
{
long t = plus(x, y);
*dest = t;

31



Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y);

sumstore:
void sumstore(long x, long y, pushq frbx )
long *dest) movq 6rdx, Srbx
{ call plus

long t = plus(x, y); mg"q :i;:, %rbx)
*dest = t; popq 5
} ret
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Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y);

sumstore:
void sumstore(long x, long vy, ﬁgshq :iﬁ: . rbx
S e cal? glus’ o
{ F )
long t = plus(x, y); mzvq ;ig:, srbx)
*dest = t; ieiq
}

Obtain (on CSUG machine) with command
gcc -O0g -S sum.c -O0 sum.s
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Turning C into Object Code
Generated x86-64 Assembly

sumstore:
pushqg srbx
movq $rdx, S%rbx
call plus
movq $rax, (%rbx)

PoPg $rbx
ret
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Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore:

pushqg srbx I\/Iemory

movq $rdx, 3%rbx

call plus g:ig

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret Oxe8
O0xf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

O0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory

pushqg srbx

movq $rdx, 3%rbx 00400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret 0xe8
Oxf2
Oxff
Oxff
Oxff
0x48
0x89
0x03
0x5b

O0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory
pushqg srbx

movq $rdx, 3%rbx 00400595 0x53

call plus 0x48

movq $rax, (%rbx) 0x89

PoPg $rbx 0xd3

ret Oxe8

O0xf2

Obtain (on CSUG machine) with command gxg
X

gcC —C sum.s -O sum.o Oxff

0x48

0x89

0x03

0x5b

O0xc3



Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address Memory
pushq srbx

movq srdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
Popq $rbx 0xd3
ret Oxe8
Oxf2
Obtain (on CSUG machine) with command Oxff
Oxff
gcc —C sum.sS -O sSum.o Oxff
0x48
 Total of 14 bytes 0x89
- Instructions have variable 0x03
lengths: e.qg., 1, 3, or 5 bytes gﬁig

« Code starts at memory address
0x0400595



Instruction Processing Sequence

Assembly oA Register Addresses > Memory
Programmer’s PC File Code
. < Data > Data
Perspective 71 [ Condtor — Stock
of a Computer Codes | |enStructions

Fetch Instruction
(According to PC)
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Instruction Processing Sequence

Assembly oA Register Addresses > Memory
Programmer’s PC File Code
: < Data > Data
Perspective 71 [ Condtor — Stk
of a Computer Codes | |enStructions

Fetch Instruction
(According to PC)

0x4801d8
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Instruction Processing Sequence

Assembly oA Register Addresses > Memory
Programmer’s PC File Code
P : < Data > Data
srepective ALU | | Condition | sirictions Stack
of a Computer Codes | e

Fetch Instruction . Decode
(According to PC) Instruction

addgq %rax, (%rbx)
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Instructions
<

Fetch
Operands

Memory

Code
Data
Stack
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Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU

PC

Register
File

Addresses

ALU

Condition
Codes

Data

>

Decode
Instruction

Fetch
Operands

Instructions
<

Memory

Code
Data
Stack

Execute
Instruction

33



Instruction Processing Sequence

Assembly
Programmer’s
Perspective
of a Computer

Fetch Instruction
(According to PC)

CPU Register Addresses Memory
. >
PC File Code
Data Data
LU | | Condition - structions e
Codes <
Decode Fetch __  Execute
Instruction Operands Instruction
v
Update
Condition

Codes

33



Instruction Processing Sequence

Assemb|y CPU Regis’[er Addresses > Memory
Programmer’s || PC File ek
.  Data Data
erspective ALU | [ ondition f1 1 ictions SHEEH
Fetch Instruction __ Decode __  Fetch __J Execute __ Store
(According to PC) Instruction Operands Instruction Results
;
Update
Condition

Codes
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Instruction Processing Sequence
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Fetch Instruction __ . Decode __  Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results
;
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Adjust
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Instruction Processing Sequence

Assemb|y CPU Regis’[er Addresses > Memory
Programmer’s || PC File ek
.  Data Data
erspective ALU | [ ondition f1 1 ictions SHEEH
Fetch Instruction __ . Decode __  Fetch __ Execute __ Store
(According to PC) Instruction Operands Instruction Results
4 :
v
Update
Condition
Codes M
Adjust

PC

33



