
CSC 252: Computer Organization 
 Spring 2022: Lecture 5 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

2

Announcement
• Programming Assignment 1 is out

• Details: https://www.cs.rochester.edu/courses/252/
spring2022/labs/assignment1.html

• Due on Jan. 30, 11:59 PM (extended)

• You have 3 slip days

Today

Due

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html

Carnegie Mellon

3

Announcement
• Programming assignment 1 is in C language. Seek help

from TAs.

• TAs are best positioned to answer your questions about

programming assignments!!!

• Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

4

Carnegie Mellon

IEEE 754 Floating Point Standard
• Single precision: 32 bits

• Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• In C language

•float	 single precision

•double	 double precision

Carnegie Mellon

5

C Data
Type Bits Max Value Max Value

(Decimal)
char 8 27 - 1 127
short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 263 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

Floating Point in C 32-bit Machine

Carnegie Mellon

5

C Data
Type Bits Max Value Max Value

(Decimal)
char 8 27 - 1 127
short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 263 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

• To represent 231 in fixed-point, you need at least 32 bits

• Because fixed-point is a weighted positional representation

• In floating-point, we directly encode the exponent

• Floating point is based on scientific notation

• Encoding 31 only needs 7 bits in the exp field

Floating Point in C 32-bit Machine

Carnegie Mellon

6

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN

Carnegie Mellon

6

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

• int → float

Carnegie Mellon

6

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

• int → float
• Can’t guarantee exact casting. Will round according to rounding mode

Carnegie Mellon

6

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• int → double

• int → float
• Can’t guarantee exact casting. Will round according to rounding mode

Carnegie Mellon

6

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part

• Like rounding toward zero

• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• int → double
• Exact conversion

• int → float
• Can’t guarantee exact casting. Will round according to rounding mode

Carnegie Mellon

7

So far in 252…
int, float

if, else

+, -, >>

C Program

Carnegie Mellon

7

So far in 252…
int, float

if, else

+, -, >>

00001111

01010101

11110000

C Program

Machine

Code

Carnegie Mellon

7

So far in 252…

Compiler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

C Program

Assembly

Program

Machine

Code

Carnegie Mellon

7

So far in 252…

Compiler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

C Program

Assembly

Program

Machine

Code

Semantically
Equivalent

Carnegie Mellon

7

So far in 252…

Compiler

Assembler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

C Program

Assembly

Program

Machine

Code

Semantically
Equivalent

Carnegie Mellon

7

So far in 252…

Compiler

Assembler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

C Program

Assembly

Program

Machine

Code

Semantically
Equivalent

Semantically
Equivalent

Carnegie Mellon

7

So far in 252…

Compiler

Assembler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

Fixed-point adder

(e.g., ripple carry),

Floating-point adder

C Program

Assembly

Program

Machine

Code

Processor

Semantically
Equivalent

Semantically
Equivalent

Carnegie Mellon

7

So far in 252…

Compiler

Assembler

int, float

if, else

+, -, >>

ret, call

fadd, add

jmp, jne

00001111

01010101

11110000

Fixed-point adder

(e.g., ripple carry),

Floating-point adder

C Program

Assembly

Program

Machine

Code

Processor

Transistor

Semantically
Equivalent

Semantically
Equivalent

NAND Gate

NOR Gate

Carnegie Mellon

8

So far in 252…
High-Level

Language C Program

Assembly

Program

Machine

Code

Processor

Transistor

Carnegie Mellon

8

So far in 252…
High-Level

Language

Instruction Set
Architecture

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

Transistor

• ISA: Software programmers’
view of a computer

• Provide all info for someone wants
to write assembly/machine code

• “Contract” between assembly/
machine code and processor

Carnegie Mellon

8

So far in 252…
High-Level

Language

Instruction Set
Architecture

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

Transistor

• ISA: Software programmers’
view of a computer

• Provide all info for someone wants
to write assembly/machine code

• “Contract” between assembly/
machine code and processor

• Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

Carnegie Mellon

8

So far in 252…
High-Level

Language

Instruction Set
Architecture

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

TransistorCircuit

Microarchitecture

• ISA: Software programmers’
view of a computer

• Provide all info for someone wants
to write assembly/machine code

• “Contract” between assembly/
machine code and processor

• Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

• Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

Carnegie Mellon

9

This Module (4 Lectures)
High-Level

Language

Instruction Set
Architecture

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

TransistorCircuit

Microarchitecture

• Assembly Programming

• Explain how various C

constructs are implemented in
assembly code

• Effectively translating from C to
assembly program manually

• Helps us understand how
compilers work

• Helps us understand how
assemblers work

•Microarchitecture is the
topic of the next module

10

Today: Assembly Programming I: Basics

• Different ISAs and history behind them

• C, assembly, machine code

• Move operations (and addressing modes)

11

Instruction Set Architecture

11

Instruction Set Architecture
• There used to be many ISAs

• x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z

• Very consolidated today: ARM for mobile, x86 for others

11

Instruction Set Architecture
• There used to be many ISAs

• x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z

• Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

• Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA

• Intel and AMD have different microarchitectures for x86

11

Instruction Set Architecture
• There used to be many ISAs

• x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z

• Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

• Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA

• Intel and AMD have different microarchitectures for x86

• ISA is lucrative business: ARM’s Business Model

• Patent the ISA, and then license the ISA

• Every implementer pays a royalty to ARM

• Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works

https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

12

Intel x86 ISA
• Dominate laptop/desktop/cloud market

12

Intel x86 ISA
• Dominate laptop/desktop/cloud market

12

Intel x86 ISA
• Dominate laptop/desktop/cloud market

13

Aside: Dynamic Binary Translation
• Apple M1 is based on the

Arm ISA. A program
compiled to x86 ISA is
dynamically translated to
Arm ISA by Rosetta.

• Not the first time Apple
plays this trick.

14

Aside: Dynamic Binary Translation

Circa 2006: PowerPC to x86 translation

15

Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on

Date Feature Notable
Implementation

1974 8-bit ISA 8080
1978 16-bit ISA (Basis for IBM PC & DOS) 8086
1980 Add Floating Point instructions 8087
1985 32-bit ISA (Refer to as IA32) 386
1997 Add Multi-Media eXtension (MMX) Pentium/MMX
1999 Add Streaming SIMD Extension (SSE) Pentium III
2001 Intel’s first attempt at 64-bit ISA (IA64, failed) Itanium
2004 Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
2008 Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

15

Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on

Date Feature Notable
Implementation

1974 8-bit ISA 8080
1978 16-bit ISA (Basis for IBM PC & DOS) 8086
1980 Add Floating Point instructions 8087
1985 32-bit ISA (Refer to as IA32) 386
1997 Add Multi-Media eXtension (MMX) Pentium/MMX
1999 Add Streaming SIMD Extension (SSE) Pentium III
2001 Intel’s first attempt at 64-bit ISA (IA64, failed) Itanium
2004 Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
2008 Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

15

Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on

16

Backward Compatibility
• Binary executable generated for an older processor can

execute on a newer processor

• Allows legacy code to be executed on newer machines

• Buy new machines without changing the software

• x86 is backward compatible up until 8086 (16-bit ISA)

• i.e., an 8086 binary executable can be executed on any of today’s

x86 machines

• Great for users, nasty for processor implementers

• Every instruction you put into the ISA, you are stuck with it FOREVER

17

x86 Clones: Advanced Micro Devices (AMD)

•Historically

• AMD build processors for x86 ISA

• A little bit slower, a lot cheaper

•Then

• Recruited top circuit designers from Digital Equipment Corp. and

other downward trending companies

• Developed x86-64, their own 64-bit x86 extension to IA32

• Built first 1 GHz CPU

• Intel felt hard to admit mistake or that AMD was better

• 2004: Intel Announces EM64T extension to IA32

• Almost identical to x86-64!

• Today’s 64-bit x86 ISA is basically AMD’s original proposal

18

x86 Clones: Advanced Micro Devices (AMD)

•Today: Holding up not too badly

18

x86 Clones: Advanced Micro Devices (AMD)

•Today: Holding up not too badly

18

x86 Clones: Advanced Micro Devices (AMD)

•Today: Holding up not too badly

19

Our Coverage
• IA32

• The traditional x86

• 2nd edition of the textbook

• x86-64

• The standard

• CSUG machine

• 3rd edition of the textbook

• Our focus

20

Moore’s Law
• More instructions typically require more transistors to implement

20

Moore’s Law
• More instructions typically require more transistors to implement

20

Moore’s Law
• More instructions typically require more transistors to implement

21

Moore’s Law
• More instructions require more transistors to implement

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year
• In 1975 he revised the prediction to doubling every 2 years

21

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year
• In 1975 he revised the prediction to doubling every 2 years
• Today’s widely-known Moore’s Law: number of transistors

double about every 18 months

• Moore never used the number 18…

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics? No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?

No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy?

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy? Yes

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy? Yes

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy? Yes

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy?
• A law of psychology?

Yes

No
No

22

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?
• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:
• A law of physics?
• A law of math?
• A law of economy?
• A law of psychology?

Yes

No
No

Yes

23

Today: Assembly Programming I: Basics

• Different ISAs and history behind them

• Memory, C, assembly, machine code

• Move operations (and addressing modes)

Carnegie Mellon

24

Byte-Oriented Memory Organization

• Data in computers are stored in “memory”

• Conceptually, envision it as a very large array of bytes: byte-addressable

• Each byte has an address

• An address is like an index into that array

• A pointer variable is a variable that stores an address

• • •
00
••
•0

FF
••
•F

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

Memory
Address

0x10
0x11

0x16

…

…

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

Memory
Address

0x10
0x11

0x16

…

…

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a

Memory
Address

0x10
0x11

0x16

…

…

4

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a

Memory
Address

0x10
0x11

0x16

…

…

4

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

Memory
Address

0x10
0x11

0x16

…

…

4

3

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

Memory
Address

0x10
0x11

0x16

…

…

4

3

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

• The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

3

random0x10

25

How Does Pointer Work in C???
char a = 4;

char b = 3;

char* c;

c = &a;

b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

• The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

37

random0x10

26

Assembly Code’s View of Computer: ISA

26

CPU

Assembly Code’s View of Computer: ISA
MemoryAssembly

Programmer’s
Perspective

of a Computer

26

CPU

Assembly Code’s View of Computer: ISA
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

26

CPU

Assembly Code’s View of Computer: ISA
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

Data

26

CPU

Assembly Code’s View of Computer: ISA
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

Data

 0x53

0x48

0x89

0xd3

26

CPU

Assembly Code’s View of Computer: ISA
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

Code
(Instructions) Data

 0x78

0xfe

0xe3

0x05

Instruction is the fundamental
unit of work.
All instructions are encoded as
bits (just like data!)

26

CPU

Assembly Code’s View of Computer: ISA
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

Code
(Instructions) StackData

 0x53

0x48

0x89

0xd3

26

CPU

Assembly Code’s View of Computer: ISA

Register

File

Memory
Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

%rax %r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15%rbp

%rsp

%rbx

%rcx

%rdx

%rsi

%rdi

8 Bytes

27

x86-64 Integer Register File

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

8 Bytes

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax

8 Bytes
4 Bytes

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax %ax

8 Bytes
4 Bytes

2 Bytes

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

C Data Type Size (Bytes)

char 1

short 2

int 4

long 8

Pointer 8

%rax

28

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

C Data Type Size (Bytes)

char 1

short 2

int 4

long 8

Pointer 8

Floating point data is
stored in a separate set of
register file

29

CPU

Assembly Code’s View of Computer: ISA

Register

File

Memory
Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

Assembly
Programmer’s
Perspective

of a Computer

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

AddressesAssembly
Programmer’s
Perspective

of a Computer

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

Addresses

Instructions

Assembly
Programmer’s
Perspective

of a Computer

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

Instructions

Assembly
Programmer’s
Perspective

of a Computer

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

Instructions

Assembly
Programmer’s
Perspective

of a Computer ALU

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• Arithmetic logic unit (ALU)

• Where computation happens

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

29

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• PC: Program counter

• A special register containing address

of next instruction

• Called “RIP” in x86-64

• Arithmetic logic unit (ALU)

• Where computation happens

• Condition codes

• Store status information about most

recent arithmetic or logical operation

• Used for conditional branch

• (Byte Addressable) Memory

• Code: instructions

• Data

• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)

• Small memory (e.g., 128 B vs. 16 GB)

• Heavily used program data

30

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code

Data

Stack

Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

30

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code

Data

Stack

Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

• addq %eax, %ebx

• C constructs: +, -, >>, etc.

30

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code

Data

Stack

Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

• addq %eax, %ebx

• C constructs: +, -, >>, etc.

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

30

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code

Data

Stack

Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

• addq %eax, %ebx

• C constructs: +, -, >>, etc.

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Control Instruction: Alter the sequence of instructions (by changing PC)

• jmp, call

• C constructs: if-else, do-while, function call, etc.

31

Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);

void sumstore(long x, long y,

 long *dest)

{

 long t = plus(x, y);

 *dest = t;

}

31

Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);

void sumstore(long x, long y,

 long *dest)

{

 long t = plus(x, y);

 *dest = t;

}

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

31

Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);

void sumstore(long x, long y,

 long *dest)

{

 long t = plus(x, y);

 *dest = t;

}

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

Obtain (on CSUG machine) with command

gcc –Og –S sum.c -o sum.s

32

Turning C into Object Code
Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

32

Binary Code for sumstore

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Turning C into Object Code

Memory

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

32

Binary Code for sumstore

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Turning C into Object Code

0x0400595

Address Memory

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

32

Binary Code for sumstore

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Turning C into Object Code

0x0400595

Address Memory

Obtain (on CSUG machine) with command

gcc –c sum.s -o sum.o

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

32

Binary Code for sumstore

0x53

0x48

0x89

0xd3

0xe8

0xf2

0xff

0xff

0xff

0x48

0x89

0x03

0x5b

0xc3

Turning C into Object Code

• Total of 14 bytes

• Instructions have variable

lengths: e.g., 1, 3, or 5 bytes

• Code starts at memory address

0x0400595

0x0400595

Address Memory

Obtain (on CSUG machine) with command

gcc –c sum.s -o sum.o

Generated x86-64 Assembly
sumstore:

 pushq %rbx

 movq %rdx, %rbx

 call plus

 movq %rax, (%rbx)

 popq %rbx

 ret

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

 0x4801d8

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

addq %rax,(%rbx)

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

Update

Condition

Codes

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

Update

Condition

Codes

Store
Results

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

Update

Condition

Codes

Store
Results

Adjust
PC

33

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code

Data

Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction

(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

Update

Condition

Codes

Store
Results

Adjust
PC

