
Final Exam

CSC 252

8 May 2019

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Jessica Ervin, Yu Feng, Max Kimmelman, Olivia Morton, Yawo Alphonse Siatitse,

 Yiyang Su, Amir Taherin, Samuel Triest, Minh Tran

 Name: ____________________________________

Problem 0 (3 points):

Problem 1 (17 points):

Problem 2 (10 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (30 points):

Total (100 points):

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. The lengths of the boxes

should be more or less indicative of the lengths of your answers. Use spare space to show all

supporting work to earn partial credit.

You have 2 hours 45 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

And have a great summer break.

1

Problem 0: Warm-up (3 Points)

Some people say 252 shouldn’t be required for the BS. What say you? (Hint: the correct answer

is YES, IT SHOULD BE, but we are not necessarily looking for the correct answer here.)

Problem 1: Floating-Point Arithmetics (17 points)

In this problem, we assume that IEEE decided to add a new N-bit representation, with its main

characteristics consistent with the other IEEE standards. This N-bit representation could

represent the value exactly, but cannot represent the value exactly. The smallest21 8
1 43 4

1

positive normalized value it can represent is 2-62
.

Part a) (3 points) Put in binary normalized form.21 8
1

1.100001 x 2^3

Part b) (3 points) Of the N bits, how many bits are fraction bits?

6

Part c) (3 points) Of the N bits, how many bits are exponent bits?

7

Part d) (4 points) What is N?

14

Part e) (4 points) What is the bias?

63

2

Problem 2: Pipelining (10 points)

A pipelined processor has 5 stages with delays as follows:

Stage 1 28 ns

Stage 2 59 ns

Stage 3 23 ns

Stage 4 34 ns

Stage 5 36 ns

The delay of pipeline registers between two stage is 1 ns.

Part a) (4 points) What is the cycle time of this processor? Recall the cycle time refers to the

delay of a single clock cycle.

60 ns

Part b) (6 points) Now we execute 8 instructions on this pipelined processor. What is the

speedup that the pipeline achieves compared to a non-pipelined design? Assume that there are

no pipeline stalls. Show your work to earn partial credit.

Without pipeline: Delay is (28 + 59 + 23 + 34 + 36) * 8

With pipeline: Delay is 60 * 5 + 7 * 60

Speedup = 2

3

Problem 3: Assembly Programming (20 points)

Clark Kent has taken CSC 252 and is working on research project on ISA. Clark defines

Kryptonian numbers and Xenonian numbers as follows.

● A binary number is said to be Kryptonian if and only if there are more 0’s than 1’s when

we discard the leading zeros. For example, 100100
2 is Kryptonian and 000001111

2 is not.

● A binary number is said to be Xenonian if and only if there are exactly 4 1’s. For example,

110110
2 is Xenonian and 11111

2 is not.

Part a) (8 points) Consider the 32-bit two’s complement representation. Is 18
10 a Kryptonian,

and is -18
10 a Xenonian? Show your work to earn partial credit.

18 is a Kryptonian

-18 is not a Xenonian

Part b) (12 points) Clark wants to add two new flags to the standard x86-64 ISA.

● Krypton Flag: set if a number is Kryptonian.

● Xenon Flag: set if a number is Xenonian.

According to Clark’s ISA specification, the addl instruction sets these two flags according to the

addition result, and the movl instruction sets these two flags according to the content of the

source operand, i.e., the content that is being moved. No other instructions change these two

flags. Other flags are set as in the standard x86-64 ISA.

Further, Clark implemented the following two instructions:

● jkr addr : jump to the address specified by addr if the Krypton flag is set and the

Overflow flag is not set.

● jxn addr : jump to the address specified by addr if the Xenon flag is set and the

Overflow flag is not set.

He wrote the following function in assembly language to test his work. Recall from the

programming assignments that movl instructions move a 4 byte integer to the destination, and

the size of the data moved by the mov instructions is implicit in the operands. We assume an

assembly syntax where the source is the first operand and the destination is the second operand.

00000000000005fa <foo>:

 5fa: 55 push %rbp

 5fb: 48 89 e5 mov %rsp,%rbp

4

 5fe: 89 7d ec mov %edi,-0x14(%rbp)

 601: 48 89 75 e0 mov %rsi,-0x20(%rbp)

 605: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%rbp)

 60c: c7 45 fc 12 00 00 00 movl $0x12,-0x4(%rbp)

 613: eb 0e jmp 61f

 615: 7e 04 jkr 61b

 617: 83 45 f8 01 addl $0x1,-0x8(%rbp)

 61b: 83 45 fc 01 addl $0x1,-0x4(%rbp)

 61f: 83 7d fc 35 cmpl $0x35,-0x4(%rbp)

 624: 7e ec jle 615 <foo+0x1b>

 626: b8 00 00 00 00 mov $0x0,%eax

 62b: 5d pop %rbp

 62c: c3 retq

Unfortunately, he made a small mistake in his implementation such that the machine will jump

to the designated address on any jkr /jxn instruction regardless of the flags.

(4 points) On this faulty machine, what is the value of -0x18(%rsp) after the foo function

returns? Hint: what do pop and retq do to %rsp ?

0

(4 points) He then fixes the mistake, and runs the same program again on this correct

machine. What is the value of -0x18(%rsp) now after the foo function returns?

26

(4 points) To test the Xenon flag and the jxn instruction, Clark replaces the instruction at

0x61f with four nop instructions, and replaces the instruction at 0x624 with jxn 615 . What

is the value of -0x18(%rsp) after the foo function returns?

3

5

Problem 4: Cache (20 points)

Solar radiation can randomly flip bits in the computer system. Therefore, a cache on a

space-faring vehicle, which is exposed to solar radiation, utilizes error-correcting codes (ECC)

for each of its cache blocks to detect if bits have been flipped. These ECC bits add to the

overhead of the cache, in addition to the usual overhead bits such as valid bits and tags, etc.

On a memory access, the cache operates as normal, but in addition to checking hit/miss it will

also check if the content in the cache block has been corrupted. This is done by checking the ECC

bits. How exactly ECC bits are used to detect corruption is irrelevant to this problem. If the ECC

bits associated with a block indicate that the data in the block is corrupted, that cache access is

regarded as a cache miss. For the sake of the problem, assume that the memory is incorruptible.

The physical memory is byte addressable, and is 64 KB in size. Each cache block is 4B, and

requires 6 extra bits for the error-correcting codes. The cache is 2-way associative with the LRU

replacement policy. The entire cache has an overhead of 3712 bits.

Part a) (4 points) For this cache to function properly, should it use a write-back policy or a

write-through policy upon a write hit?

Write through

Part b) (4 points) Determine the number of offset bits.

2

Part c) (4 points) Determine the number of tag bits.

7

Hint: how many bits does each set have to have to implement the LRU replacement policy? Use

the box below to show your work to earn partial credit.

6

Part d) (8 points) Given the following sequence of 9 cache accesses; some cache accesses

result in loads from the physical memory. Assume that the initial state of the cache is empty.

Address Load From Memory?

a) 0x3420 Yes

b) 0x3423 Yes

c) 0x062e Yes

d) 0x1e2f Yes

e) 0x73ec Yes

f) 0x062f No

g) 0x0e2f Yes

h) 0x1e2e Yes

i) 0x0e2e Yes

Determine which accesses were necessarily a result of cache corruption due to solar radiation.

Write the letters corresponding to the memory addresses below:

b) and i)

7

Problem 5: Virtual Memory (30 points)

The diagram below shows the interactions between components of a computer system resulting

from a single virtual memory access from the CPU. You are given the following information:

● Assume a single-level virtual memory system.

● The virtual address space is 128 KB.

● The physical memory size is 32 KB.

● The L1 cache block size is 2 B.

● The value stored in the Page Table Base Register (PTBR) is 0x260.

● Each Page Table Entry (PTE) takes 2 B and has the following structure:

Valid <1-bit> Padding of zeros Physical page number

Part a) (22 points) Fill in the right column of the table below with answers to the questions
about each step in the diagram above. “I don’t know” is accepted at each entry.

1 CPU reads virtual address 0x_______ 0x488

2 MMU checks TLB. Is this a hit or a miss? miss

3 MMU accesses memory at physical address
0x2F0. Is this a hit or a miss?

hit

4 What is the most significant bit of the data
returned to the MMU and TLB?

0

5 What happens at this step?
(Answer in 15 words or fewer)

Page fault handler evicts a victim page
from physical memory

8

6 16 bytes are returned. (no question)

7 CPU reads virtual address 0x_______ 0x488

8 MMU checks TLB. Is this a hit or a miss? hit

9 Data returned from TLB to MMU is 0x______ 0x80A4

10 MMU accesses memory at physical address
0xA48. Is this a hit or a miss?

miss

11 Is this an access to the page table? no

12 How many bytes of data are returned here? 2B

13 Requested data is returned to the CPU. (no question)

Part b) (3 points) How many pages does the entire page table occupy?

2^10 = 1024

Part c) (3 points) How many physical memory accesses were made during this single virtual
memory access?

2 or 3
(depending on how you count)

Part d) (2 points) What would the system do differently at step 3 and 4 if the L1 cache block
size is 1 B?

The system would request and receive two cache blocks from the L1 cache and concatenate
them instead of just accessing one cache block in order to get the PTE

9

