
Final Exam

CSC 252

6 May 2020

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Daniel Busaba, Sudhanshu Gupta, Mandar Juvekar, Max Kimmelman, Weituo Kong,

Jiahao Lu, Vladimir Maksimovski, Nathan Reed, Yawo Alphonse Siatitse, Yudi Yang, Shuang

Zhai, Prikshet Sharma

 Name: ____________________________________

Problem 0 (2 points):

Problem 1 (28 points):

Problem 2 (20 points):

Problem 3 (28 points):

Problem 4 (24 points):

Total (100 points):

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 3 hours to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

Have a great summer break!

1

Problem 0: Warm-up (2 Points) What’s your favourite register?

Problem 1: Miscellaneous (26 points)

Part a) (6 points) What is the result of adding the value 11
2 to the value 0x40? Express your

answer in octal (base 8).

Part b) (8 points) Consider the following assembly program. The value 5 is contained in rcx

and the value 2 is contained in rdx when execution starts.

add rcx, rdx

mov r11, 3

.L1: dec rcx

mov r8, r9

cmp 0,1

beq 0x584fc0

 inc r11

.L2: cmp rcx, 0

jne .L1

.L3: add r8, r9

(4 points) What is the value stored in r11 when .L3 is reached?

(4 points) What is an instruction that could be substituted in at .L2 without changing the

functionality of the program?

2

Part c) (4 points) Give code for a C function that takes one integer as input and returns that

integer multiplied by 5. You may not use the * operator and you may not use a loop of any kind.

You may use at most three operators.

Part d) (4 points) Give two reasons the pipeline may stall during execution.

Part e) (4 points) Consider the following C program. Assume that it executes on a CSUG

machine. Reminder: the “gets ” function reads a string, ending with a newline, from standard

input into the given buffer (it will read until it sees a newline). Assume that you (the user who is

giving input to the program) can figure out the address of every function in memory (e.g., from

disassembly/debugger).

3

Which of the following is a possible output of this program? Select ALL correct answers (there

may be multiple).

A

hello from function 2

What is the airspeed velocity of an unladen swallow?

B

hello from function 1

What is the airspeed velocity of an unladen swallow?

hello from function 2

C

hello from function 2

What is the airspeed velocity of an unladen swallow?

this is a neat function

D

hello from function 2

What is the airspeed velocity of an unladen swallow?

hello from function 1

this is a neat function

E

hello from function 2

What is the airspeed velocity of an unladen swallow?

<program crashes after user input>

4

Problem 2: Floating-Point Arithmetic (20 points)

Part a) (4 points) Express 4 ⅜ in binary normalized form.

Part b) (16 points) A new IEEE-consistent floating-point representation is being developed

which uses 8 bits. Given below are the binary representations of 4 floating-point numbers in this

representation.

A. 1111 1011

B. 0010 0100

C. 0011 0001

D. 1011 0001

Below are 2 floating-point numbers that are the sum of some pairs of the numbers above:

1. 0000 0000

2. 0011 0100

(4 points) Which 2 numbers in A, B, C, and D generate the sum 2 above ? (You can do this

without calculating anything) (Choose two from A, B, C, or D)

(4 points) How many exponent bits are used?

(4 points) How many fraction bits are used?

(4 points) What is the bias?

5

Problem 3: Cache (28 points)

You have been asked to design a byte-addressable, 4-way associative cache (meaning that each

set in the cache can hold 4 cache lines). You have decided that since it is complicated to

implement a Least Recently Used (LRU) policy for a set of 4 cache lines, you will use another

replacement policy.

The policy you chose to use instead is a variant of a replacement policy called Not Most Recently

Used (NMRU). This policy guarantees that the most recently used cache line in each set will not
be replaced, and instead, some other cache line is selected for replacement.

The way you will implement this policy is by assigning an index to each line in the set (either 0,

1, 2, or 3), and keeping track of the index of the most recently used cache line in each set with

MRU bits that are cache overhead (the only overhead in the cache will be valid, tag, and MRU

bits). If the cache set is not full, new cache lines will be placed in the set at the lowest free index.

If the cache set is full, the table below indicates the replacement policy.

Index of most recently used cache line 0 1 2 3

Index of cache line that will be replaced next 3 0 1 2

You took notes of all the rest of the specifications of your cache on a whiteboard, but you

accidentally left it next to an open window when it rained, and some of your notes washed away.

Here are your remaining notes:

● the size of each cache line is 4 bytes

● the number of overhead bits required for each cache set is 26

● the cache will hold a total of 512 cache lines.

Part a) (4 points) How many bits per set are needed to implement the NMRU policy?

Part b) (4 points) How many bits are needed for a tag?

6

Part c) (4 points) What is the total physical memory on the machine that you are designing

this cache for?

Part d) (16 points) Now we want to compare memory access behavior under two different

policies: NMRU and LRU. Assume that both of them have the same cache configuration as

previous questions. The only difference is the replacement policy. Given the following sequence

of memory accesses, please indicate whether a particular memory access will result in a cache hit

or miss (Please fill in Hit or Miss).

Assume that the cache is initially empty. The hit/miss behaviors of the first seven accesses under

both replacement policies are given.

Address NMRU LRU

0000 1010 0100 1001 Miss Miss

0001 1000 0110 0100 Miss Miss

0001 0010 0100 1010 Miss Miss

0000 1100 0100 1001 Miss Miss

0001 0010 0110 0111 Miss Miss

0000 1010 0110 0101 Miss Miss

0001 1000 0100 1010 Miss Miss

0001 1110 0100 1011

0000 1010 0100 1011

0000 1100 0100 1000

0001 1000 0100 1011

7

Problem 4: Virtual Memory (24 points)

Assume a system which has the following characteristics:

1. Virtual address space is 64 KB and is byte addressable

2. Physical RAM is 16 KB and is byte addressable

3. Page size is 256 Byte

4. One level page table, where each page table entry contains a valid bit, a dirty bit, and the

physical page number

5. Integer is 32 bits

6. PTBR is 0x2F5C
7. There is a data TLB that stores two page table entries

Part a) (4 points) What is the size of each page table entry?

Part b) (4 points) What would be the size of the page table?

Part c) (4 points) Does the system use a write-through policy or a write-back policy for writes

to pages?

Part d) (12 points) Consider the following C program:

void square(int a[16][16]) {

 for (int j=0; j < 16; j++) {

 for (int i=0; i < 16; i++) {

 a[i][j] = a[i][j] * a[i][j];

 }

 }

}

8

Suppose that the virtual address of matrix ‘a ’ is 0x0300 . Assume the data TLB is empty when

the code starts execution. Assume the following layout for each page table entry:

Valid bit Dirty bit Physical page number

The table below shows a part of the main memory before the code executes.

Address Data

2F5B 8B

2F5C 8C

2F5D CD

2F5E 8E

2F5F CF

2F60 C0

(4 points) To read the data in a[3][10] , what physical memory addresses are accessed by the

program?

(4 points) How many data TLB misses does executing square() incur?

(4 points) How can you improve the program to have fewer TLB misses? Write both the

technique and the new number of misses.

9

