
Final Exam

CSC 252

12 May 2021

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Rongcui Dong, Elana Elman, Kalen Frieberg, Sudhanshu Gupta, Yiyao (Jack) Yu, Vladimir
Maksimovski, Nathan Reed, Rafaello Sanna

Name: ____________________________________

Problem 0 (3 points):

Problem 1 (14 points):

Problem 2 (15 points):

Problem 3 (16 points):

Problem 4 (22 points):

Problem 5 (30 points)

Total (100 points):

Extra Credit (15 points)

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 3 hours to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (3 Points)

What’s the most surprising thing about computers you learned from 252?

Problem 1: Miscellaneous (14 points + 12 points extra credit)

Part a) (3 points) Convert the decimal number 334 to hexadecimal.

0x14E

Part b) (3 points) Why wouldn't a user program that contains an infinite loop freeze the entire

computer even if the computer has only one processor?

OS preempts processes periodically to context-switch and execute other processes.

To get full points, the answer must show:

1. Operating System

2. Context switch

3. Preemption

Part c) (8 points) Consider a shell in Linux, sh, that supports basic foreground/background

job control, just like the one you implemented in Assignment 4. Initially, myprogA is running in

the foreground, myprogB is running in the background as job 1, and myprogC is stopped in the

background as job 2. Assume this initial state for each question below.

(4 points) The user presses Ctrl-C and kills the foreground process. List all signals that are

generated and the receivers of these signals.

SIGINT to myprogA; SIGCHLD to sh.

Alternative answer: SIGINT to sh, which forwards to myprogA; SIGCHLD to sh

2

(4 points) myprogA finishes, then the user presses Ctrl-Z at the shell's command prompt.
List all the signals that are generated and the receivers of these signals.

SIGCHLD to sh; SIGTSTP to sh

Part d) (this entire part is extra credit; 12 points) You are designing a new ISA called

URISA, which supports the following instructions.

Instruction Semantics

ADDI rd, rs1, imm Sum immediate imm and register rs1, store the sum in register rd

ADD rd, rs1, rs2 Sum two registers rs1 and rs2, store the result in register rd

LW rd, delta(rs1) Load 4 bytes to register rd from memory location specified by

rs1 + delta

SW rd, delta(rt) Store 4 bytes from register rd to memory location specified by rt
+ delta

BLTU rs, rt, label Jump to label if register rs < rt; both rs and rt are

interpreted as unsigned numbers.

In addition, these registers are supported in URISA:

Register(s) Description X86 Equivalent

zero Always reads zero; write ignored -

ra Return address of a function On stack

a1 Return value of a function %eax

sp Stack pointer %esp

t0-6 Temporary registers Any free register, e.g., %ecx, %edx

Translate each of the following x86 instructions to the equivalent URISA instructions using only

the instructions listed above. You may use any register above, but no new memory location other

3

than what is used in the original x86 instruction. Note that the x86 instructions use the

AT&T/GAS syntax, i.e., opcode src, dst.

For example, the x86 instruction pop (%eax) would be equivalent to:

LW t0, 0(sp)
SW t0, 0(a1)
ADDI sp, sp, 4

(3 points extra credit) add $0x8, %esp

ADDI sp, sp, 0x8

(3 points extra credit) add %eax, 8(%esp)

LW t0, 8(sp)

ADD t0, a1, t0

SW t0, 8(sp)

// Or equivalent

(3 points extra credit) push $0x252

ADDI t0, zero, 0x252

ADDI sp, sp, -4

SW t0, 0(sp)

// Or equivalent

(3 points extra credit) This processor does not have an Overflow flag. Fill in the following

assembly so that if the ADD instruction causes an unsigned overflow, the program jumps to the

overflow label.

ADD t3, t1, t2
_____BLTU t3, t1, overflow ; or BLTU t3, t2, overflow
;… code omitted
overflow:
;… code omitted

4

Problem 2: Floating-Point Arithmetics (15 points)

Part a) (3 points) Put into the binary normalized form.6 5
16

1. 100101 × 22

Part b) (12 points) The IEEE has decided to introduce a floating-point standard of some

unknown size, whose main characteristics are consistent with existing floating-point number

representations that we discussed in the class.

The following bit sequence contains the exact encoding of in this new standard, but is6 5
16

padded with arbitrary bits at the beginning and in the end: 10010100110010110.

(3 points) How many bits are used for the fraction in this new standard?

6

(3 points) How many bits are used for the exponent in this new standard?

4

(3 points) What is the bias in this new standard?

7

(3 points) What is the smallest positive value that can be precisely expressed using this new

floating-point format? You can write your answer either in the binary-normalized form or as a

bit sequence.

5

0|0000|000001 or 2^(-12)

Problem 3: Assembly Programming (16 points)

Conventions:

1. For this section, the assembly shown uses the AT&T/GAS syntax opcode src, dst
for instructions with two arguments where src is the source argument and dst is the

destination argument. For example, this means that mov a, b moves the value a into b
and cmp a, b then jge c would compare b to a then jump to c if b ≥ a.

2. All C code is compiled on a 64-bit machine, where arrays grow toward higher addresses.

3. For functions that take two arguments, the first argument is stored in %edi and the

second is stored in %esi at the time the function is called. The return value of this

function is stored in %eax at the time the function returns.

Part a) (9 points) The following is assembly code for a C function find_next():

0000000000001169 <find_next>:
1169: mov %edi,%eax
116b: inc %eax
116d: mov $0x2,%edx
1172: cmp %eax,%edx
1174: jge 1184 <find_next+0x1b>
1176: mov %eax,%ecx
1178: sub %edx,%ecx
117a: test %ecx,%ecx
117c: jg 1178 <find_next+0xf>
117e: je 116b <find_next+0x2>
1180: inc %edx
1182: jmp 1172 <find_next+0x9>
1184: ret

(3 points) What is the return value of find_next(2)?

3

(3 points) What is returned when a non-positive x is provided to find_next(x)? Show your

answer in terms of x.

6

x+1

(3 points) For positive values of x as input, what does find_next(x) do?

Finds the smallest prime larger than x

Part b) (7 points) Some students wrote a CSC252 project in assembly. They discover right

before submission that the machine used for grading has a faulty call instruction. They decide

to rewrite the project without using call. The behavior of a call can be reproduced with

exactly two other instructions.

(3 points) On a correct 64-bit machine, which register(s) does call 1169 update?

Explain how the register value(s) change.

%rsp = %rsp - 8

%rip = 1169

(4 points) Which instructions would they use to replace the faulty call? Provide just the

names of the instructions in the order they are used.

push, jmp

(You can not mov a value into %rip)

7

Problem 4: Cache (22 points)

You are designing a cache for an 8-bit machine that has a byte-addressable memory. Remember

that an 8-bit machine means that the length of a memory address is 8 bits. The cache line size is

2 bytes. As a first attempt, you design a 4-way set associative cache with 2 sets and a random

replacement policy. A random replacement policy chooses a line to replace at random within the

set. To reduce memory traffic, you design it to be a write-back cache.

Assuming that the machine runs only one program, which will generate the following memory

access sequence.

Access Address

1 00110000

2 10100010

3 10011001

4 01011101

5 00110111

6 10011010

7 01011110

8 01101100

9 10100010

(6 points) How many bits do you need for the tag, the set index, and the cache line offset?

6 bits tag, 1 bit set, 1 bit offset

(Of the 8 bits in an address, 1 bit decides which byte of the cache line it is, 1 bit decides which

set it’s in, and the remaining 6 bits must be the tag.)

(3 points) How many overhead bits does this cache have? Recall that overhead includes the tag

bits, the dirty bits (if needed), and the replacement bits (if needed). Show you work to earn full

credit.

8

64 bits.

(No bits for random replacement, so overhead = (# lines)*(1 valid bit + 1 dirty bit + 6 tag

bits) = 8*8 = 64 bits. Accepted 56 bits with a point taken off if the valid bit is not included.)

(3 points) Assuming the cache is initially empty. How many cache misses will the program

generate when it’s run for the first time?

8 (all but the last access miss)

(3 points) How many cache misses will the program generate when it’s run for the second

time?

0 (All addresses were loaded into the cache on the first run, and none were replaced.)

(4 points) Looking carefully at the access pattern, you realize that it is possible to design a

cache with a smaller overhead that achieves a 100% hit rate for the program after the initial run.

Without changing the cache line size, explain the new design of your cache, i.e., its associativity

and the number of sets.

4 sets, 2-associative

(An 8 set direct-mapped cache causes some misses, and a fully associative cache does not

reduce overhead because set index bits are not part of the overhead.)

(3 points) What is the overhead of your new cache design?

56 bits

(A 2-way associative 4 set cache needs 1 less tag bit per line, so 8 bits total less than the

second answer. 1 point taken off if valid bit is not included.)

9

Problem 5: Virtual Memory (30 points + 3 points extra credit)

You are building a machine with virtual memory support. The virtual address space is 256 KB

(2^18 bytes). The physical memory size is 32KB. The system uses a one-level page table.

Part a) Basic organization (13 points + 3 points extra credit)

(4 points) Assume the page size is 1KB. How many bits are used for the physical page number

(PPN), and how many for the virtual page number (VPN)?

PPN: 5

VPN: 8

(3 points) What is the size of one PTE, assuming that the only overhead in the PTE is one valid

bit and that the disk address is 2 bits longer than the PPN.

Disk address + 1 = 8

(3 points) You decide to experiment with changing the page size to 4KB. What is the size of one

PTE now? Continue to assume that the only overhead in the PTE is one valid bit and that the

disk address is 2 bits longer than the PPN.

Disk address + 1 = 6

(3 points) The system has a TLB. What is likely to happen to the TLB hit rate when we increase

the page size to 4KB? Will it increase or decrease? Explain your answer to receive ANY credit.

It will increase.

1. Since PTEs are smaller, more of them can be stored in a cache of the same size.

2. Since there are fewer pages, the TLB will store a higher proportion of PTEs.

3. Spatial locality properties make it likely that TLB hit rate will increase.

(3 points extra credit) If the machine were to use a two-level page table with a 4KB page size,

how many PTE entries are there in the level 1 page table?

10

Just 1 PTE.

Part b) Protection (8 points)

The major customer for your system is the US Government. They want a secure system that is

safer from buffer overflow attacks. The memory protection system should help protect against

arbitrary code execution in the event that someone manages to exploit a buffer overflow.

(4 points) Briefly explain the mechanism by which an attacker exploits a buffer overflow. Your

answer must cover 1) where in memory the attacker can place the code and 2) how the injected

code can be executed.

1. Attacker uses buffer that is too short/input is not bounds checked to store encoded

machine instructions.

2. Attacker input overwrites return address. When vulnerable function returns, it will return

to the attacker-controlled return address, which will point to the start of the attacker’s code.

(4 points) Now you want to augment the PTE structure with permission information to defend

against buffer overflow attacks. In order to keep the overhead low, you decide that you will use a

maximum of 2 permission bits, which will indicate whether a page can be written to, whether a

page can be read from, and whether a page’s contents can be executed as code. Assuming

defending buffer overflow attacks is your sole goal in this design process, how will you use the 2

permission bits? Explain the semantics of each bit to receive full credit.

Use 1 bit for read permission (1 = can read, 0 = no read)

Use 1 bit for write/execute (1 = write, no execute, 0 = execute, no write)

The key insight is that we don’t want user-writable memory to also be executable, so we can

use one bit to handle both write and execute permission, since if it’s writable, it can’t be

executable, and if it’s executable, it can’t be writable.

Part c) Performance (9 points)

Management decided to go with the 1KB page size for this machine and removed the TLB to cut

costs. Consider the C code below. Assume:

1. A 1-level page table translation scheme with the page table starting empty, and

2. arr is aligned such that it starts 8 bytes before a page boundary.

void func() {
int arr[2048];

11

for(int i = 0; i < 8; i++) {

if(rand_0_1() == 1) {
printf("%d\n", arr[(i << 8) + 1]);
printf("%d\n", arr[(i << 8) + 2]);

} else {
printf("%d\n", arr[i]);
printf("%d\n", arr[i + 2]);

}
}

}

rand_0_1() is a function that returns either 0 or 1, at random.

For the following 3 questions, only count page faults generated by accessing elements of arr.

(3 points) What is the maximum number of page faults that this code could possibly generate?

Explain.

9. 2 on the first iteration. Then if the function returns 1 every time, it will cause 1 additional

page fault, because the first access for each iteration will be on the page that was loaded for

the second access of the last iteration. The second access on each iteration will cause a fault.

(3 points) What is the minimum number of page faults that this code could possibly generate?

Explain.

2, if the function returns 0 every time. The 2 are from the first iteration, everything after that

is on the same page.

(3 points) Suppose that the rand_0_1() function is faulty and it returns 0 40% of the time

and 1 60% of the time. How many page faults, on average, will this code generate? Explain.

6.2. Two initially plus an expected value of 4.2 for the other 7 iterations (0.6 chance for 1

page fault per iteration, 0.4 chance of 0, 0.6*7 = 4.2)

12

