
Midterm Exam

CSC 252

3 March 2022

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Nisarg Ujjainkar, Abhishek Tyag, Kalen Frieberg, Gunnar Hammonds, Mandar Juvekar,

Zihao Lin, Vladimir Maksimovski, Yiyao (Jack) Yu

Name: ____________________________________

Problem 0 (2 points):

Problem 1 (16 points):

Problem 2 (10 points):

Problem 3 (16 points):

Problem 4 (30 points):

Problem 5 (16 points)

Total (90 points):

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 75 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (2 Points)

What’s the most unexpected thing you’ve learned in 252 so far?

Problem 1: Fixed-Point Arithmetics (16 points)

Part a) (3 points) Represent decimal number 42 in hexadecimal form.

Part b) (3 points) Represent octal (base 8) number 35 in decimal form and binary form.

Part c) (10 points)

(2 points) Represent signed integer values -25, -18 in 2’s complement form, assuming a 6-bit

representation.

(6 points) If -25 and -18 are stored in two 6-bit registers R1 and R2, respectively, what are the

values of the zero flag, sign flag, and overflow flag after the operation “add R1, R2”?

(2 points) What is the value in R2 after “add R1, R2”? Expressed the result in binary.

2

Problem 2: Floating-Point Arithmetics (10 points)

Part a) (2 points) Write -35.75 in the normalized scientific notation.

Part b) (4 points)

Suppose we are using a new 13-bit floating-point standard whose characteristics are compliant

with the floating-point representations we discussed in the class. For this representation,

exponent bias is 7.

(2 points) How many bits are used for exponent and fraction?

(2 points) What is the floating point representation of 0xoA90 in this format?

Part c) (4 points) Consider two numbers f1 and f2, where f1 < f2. Now we express f1 and

f2 in the IEEE single-precision format and interpret the resulting bitstreams as unsigned

integers. Let’s call the unsigned integers i1 and i2. Can we say i1 < i2? If not, provide a

counter-example. If yes, explain.

3

Problem 3: Logic Design (16 points)

Part a) (4 points)

(2 points) What is the result of a bitwise NAND operation between 101101 and 010110?

(2 points) What is the result of a bitwise XOR operation between 101010 and 111011?

Part b) (6 points)

The given circuit consists of N XOR gates cascaded as shown.

(4 points) What is the output of the circuit for the following values of N? You can write the

output as a function of A.

N = 50

N = 63

4

(2 points) Can you find a relationship between values of N and the output in terms of A?

Part c) (6 points)

The combinatorial circuit shown below takes three 1-bit inputs: A, B, and C, and produces one

1-bit output. The relationship between the inputs and the output is shown below as a truth table.

The circuit contains two identical, unknown gates X.

A B C Out

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

(3 points) What is gate X?

(3 points) Assuming the delay of each gate is 1ps, what is the delay of the entire circuit?

5

Problem 4: Assembly Programming (30 points)

Conventions:

1. For this section, the assembly shown uses the AT&T/GAS syntax opcode src, dst
for instructions with two arguments where src is the source argument and dst is the

destination argument. For example, this means that mov a, b moves the value a into b
and cmp a, b then jge c would compare b to a then jump to c if b ≥ a.

2. All C code is compiled on a 64-bit machine, where arrays grow toward higher

addresses.

3. For functions that take two arguments, the first argument is stored in %edi and the

second is stored in %esi at the time the function is called. The return value of this

function is stored in %eax at the time the function returns.

Part a) (20 points)

The following is the C definition of struct Data:

struct Data {
int matrix[3][3];
int *value;

};

(4 points) What is the size of struct Data?

(4 points) If the start of struct Data d1 is stored at -0x30(%rbp), where in memory is

d1.matrix[2][1] stored?

(6 points) Still assuming the struct Data d1 is stored at -0x30(%rbp). Complete the

instructions below used to access *(d1.value).

mov A (%rbp),%rdx
B (%rdx),%eax

A:

6

B:

Consider the C function is_equal():

int is_equal(struct Data *p1, struct Data *p2) {
char *ptr1 = (char *) p1;
char *ptr2 = (char *) p2;
for (int i = 0; i < sizeof(struct Data); i++) {

if (ptr1[i] != ptr2[i]) return 0;
}
return 1;

}

(3 points) What does is_equal() do?

Now assuming d1 and d2 are initialized as follows:

struct Data d1 = {
.matrix = {

{1, 2, 3},
{4, 5, 6},
{7, 8, 9}

},
.value = NULL

};

struct Data d2 = {
.matrix = {

{1, 2, 3},
{4, 5, 6},

7

{7, 8, 9}
},
.value = NULL

};

(3 points) Will is_equal(&d1, &d2) always return 1? Explain.

Part b) (10 points) The following is the assembly code for a mystery function foo():

0000000000000000 <foo>:
0: xor %eax,%eax
2: xor %ecx,%ecx
5: mov %esi,%edx
7: add (%rdi,%eax,4),%ecx
b: sub %eax,%edx
d: dec %edx
f: jle 16 <foo+0x16>

11: inc %eax
14: jmp 5 <foo+0x5>
16: mov %ecx,%eax
19: ret

At the beginning of execution, the value stored in %esi is 4, and %rdi contains the start address

of a 4-element integer array [9, 8, 7, 6].

(3 points) What is the value of %ecx after the second execution of add
(%rdi,%eax,4),%ecx?

(3 points) How many times is jmp 5 executed?

8

(4 points) Does this function terminate? If not, why? If so, what value does the function

return?

9

Problem 5: Processor architecture (16 points)

Part a) (6 points)

We have two processors:

● Processor 1 has a 5 stage pipeline with stages: Fetch, Decode, Execute, Memory, Write

Back and a 2.5 GHz clock frequency (i.e., 400 ps per cycle). The functionalities of the five

stages are the same as we discussed in the class.

● Processor 2 has a 3 stage pipeline with stages: Fetch, Decode, EMW, where the EMW

stage combines the Execute, Memory, and Write Back stages in Processor 1. This

processor has a clock frequency of 1.6 GHz (i.e., 625 ps per cycle)

Note that there are 10
12

ps per second.

(4 points) What’s the throughput (in instructions per second) for Processor 1 and Processor 2,

respectively, assuming no stalls?

(2 points) For what reasons would you expect processor 2 to have a higher clock frequency

than processor 1? You should assume that everything between the processors are the same other

than clock frequency and pipeline structure.

Part b) (10 points)

Assume a processor architecture implementing the x86 ISA that is pipelined in 5 stages (fetch,

decode, execute, memory, and write back) as discussed in lectures. The program is executing the

piece of assembly shown below on the left. Assuming the pipeline is empty at the start of the

program, and %rip points to the first instruction.

10

Assembly Code Relevant part of the memory & registers at the start of the
program

.L1: incq %rax

.L2: cmpq %rax, %rbx

.L3: jge .L8

.L4: addq $0x3, $rax

.L5: xorq %rax, %rbx

.L6: cmpq %rbx, %rax

.L7: jmp .L9

.L8: nop

.L9: leaq -0x8(rcx), %rdx

.L10: addq (%rdx), %rax

.L11: movq 0x8(%rcx), %rbx

.L12: cmpq %rax, %rbx

.L13: jle .L15

.L14: negq %rax

.L15: addq %rax, %rbx

Registers:

%rax: 0x196
%rbx: 0x200
%rcx: 0x40000810
%rdx: 0

Memory:

0x40000800: 0x205
0x40000808: 0x207
0x40000010: 0x352
0x40000018: 0x595
0x40000020: 0x400

(3 points) Which jump instructions get executed and are taken (i.e., do not fall-through)? List

them by their labels, e.g. L3, L7, L13.

(5 points) Write down the list of stalls due to control dependencies. Write down the labels

of all the pairs of instructions creating such stalls, e.g., L1 -> L2 if L1 and L2 create a control

dependency.

(2 points) Where in the pipeline is a control dependency resolved?

11

