CSC 252: Computer Organization
Spring 2023: Lecture 12

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Programming assignment 3 out.

e If you don’t see your lab2 score on the scoreboard, talk to a TA.

12 13 14 @ 16 17

Today

19 20 21 22 23 24

26 27 28 Mar 1 2 3

So far in 252...

C Program

i

Assembly
Program

i

Instruction Set Architecture

Processor

Microarchitecture

Circuits

Today: Circuits Basics

e Basics

Delay of Bit Equal Circuit

— KLD—

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

Delay of Bit Equal Circuit

Bit equal
T -
vV —)47 teq
SRS

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

Delay of Bit Equal Circuit

Bit equal
T
V)t
b — @_

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis

Delay of Bit Equal Circuit

Bit equal

T -

4.3
b = & Critical Path

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis

Glitch/Hazard

10.0 ns

0.0 ns

A

° \

C

F
A
B

{>o

C

Glitch/Hazard

0.0 ns 10.0 ns

m O W >

@_

Glitch/Hazard

0.0 ns 10.0 ns

e A glitch is an unnecessary
signal transition without
functionality.

m O W >

®_

Glitch/Hazard

m O W >

0.0 ns

10.0 ns

@_

e A glitch is an unnecessary
signal transition without
functionality.

« Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

Glitch/Hazard

0.0 ns 10.0 ns

e A glitch is an unnecessary
signal transition without
functionality.

« Why is it bad? When

\
transistors switch they
®— consume power, but the
power consumed during a

glitch is a waste.

A « Without care, glitch power
dissipation is 20%-70% of
B — F total power dissipation.

m O W >

64-bit Equality

64-bit Equality

Doz ™ €063
Bit equal
de3
b, _ €062
Bit equal
g2 ™|
[[
[[
[[
b, edq;
Bit equal
a;
by— eq,
Bit equal

e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0

e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0

bool out = (s&&a) || (!'s&é&b)

MUX

Out

e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0

bool out = (s&&a) || (!'s&é&b)

MUX Out

Bit MUX

— out

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

S{0] ! K{ Bit MUX

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

S{0] ! K{ Bit MUX

s[0] ! K{ Bit MUX

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

s[O]

ki

Bit MUX

s[1]

ki

Bit MUX

ki

Bit MUX

— out

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

s[0] ! V{ Bit MUX
A s[1] . :

4.7 KZ Bit MUX
B 4.3

s[0] ! K{ Bit MUX
What’s the latency of

D this implementation?

—

— out

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

10

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

10

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

* A standard cell library is a collection of well defined and
appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

10

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

* A standard cell library is a collection of well defined and
appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

* The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

10

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

* A standard cell library is a collection of well defined and
appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

* The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

e Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

* Logic design uses the gate-level abstractions
* VLSI tells you how the gates are implemented at transistor-level

10

Recall: Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A BC.|Ss c,

t
0 0 0[]0 O
00 1(1 o
01 01 o
01 1|0 1
10 0|1 0
1.0 1[0 1
11 00 1
11 1(1 1

11

Recall: Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

S =(~A&~B &Ci)
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

| (A& B & Cin)

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cip)
(A& B& Ci)

>
w
0

)]
@]

=)
c

O G T = T S G < Y)

- O =) O = O = 0O

O = T = T G - JE G G

_ S =S O =) 0 0 O]l

11

Recall: 1-bit Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

Cou=(~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Ci)
(A& B& Cin)

12

Recall: 1-bit Full Adder

Add two bits and carry-in,

produce one-bit sum and carry-out.

A

B

. 4

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Ci)
(A& B& Cin)

Ot

B
JUUUC

out

+—— (OR Gates

Recall: 1-bit Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A

B

g

Cw=@A&B&Q@)

(A & ~B & Cin)

(A& B & ~Ci)
)

bﬁ@@

v

Ot

out

+—— (OR Gates

12

Recall: Four-bit Adder

A, B, A, B, A, B
| | |
A B A B A B

Full C. Full € Full

Adder Adder Adder

e S C S C. S

Cout SS S2 S1

13

Recall: Four-bit Adder

* Ripple-carry Adder
e Simple, but performance linear to bit width

A, B, A, B, A, B,
| | |
A B A B A B
Full € Full € Full
Adder Adder Adder
C. S C.. S c S
c:out SS S2 S1

13

Recall: Four-bit Adder

* Ripple-carry Adder

e Simple, but performance linear to bit width
* Carry look-ahead adder (CLA)

* Generate all carriers simultaneously

A, B, A, B, A, B,
| | |
A B A B A B

Full ©C. Full & Full

Adder Adder Adder

C. S C.. S C. S

Arithmetic Logic Unit

Y —,
'E‘ _Result of some computation
U between X and Y

X — B i OF

....... .’ CF

e An ALU performs multiple kinds of computations.
* The actual computation depends on the selection signal s.
* Also sets the condition codes (status flags)
e For instance:
* X+ Y whens==00
* X-Y when s == 01
e X& Y whens==10
* XAY when s == 11
e How can this ALU be implemented?

14

Arithmetic Logic Unit

* Implement 4 different circuits, one for each operation.
* Then use a MUX to select the results

Y A Y A Y A Y A
X —™B ~i. OF X —™B ~#. OF X —™B A.. OF X —™B <. OF
------- ZF LI ZF LI ZF LI ZF
.......... CF e O e o)
X+Y X-Y X&Y XY

Today: Circuits Basics

* Circuits for storing data

16

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter

17

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
e Every state is essentially some bits that are stored/loaded.

17

The Need for Storing Bits

e Assembly programs set architecture (processor) states.

* Register File

e Status Flags

* Memory

* Program Counter
e Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.

17

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
e Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.

17

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
e Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.
* There are many different ways to store bits. They have trade-offs.

17

Build a 1-Bit Storage

D

Some Logic

* What we would like:
e D is the data we want to store (O or 1)
e C is the control signal
 When Cis 1, Q becomes D (i.e., storing the data)
« When C is 0, Q doesn’t change with D (data stored)

18

Bitstable Element

19

Bitstable Element

19

Bitstable Element

19

Bitstable Element

19

Bitstable Element

Bistable Element

19

Bitstable Element

Vi,,=V, Bistable Element

Q+ continuously outputs q.

19

Storing and Accessing 1 Bit

Bistable Element

20

Storing and Accessing 1 Bit

Bistable Element

OR

Q+

20

Storing and Accessing 1 Bit

Bistable Element

OR

Q+

20

Storing and Accessing 1 Bit

Bistable Element

q
Q+ R
|
9 Q-
Q S
qg=0or1

Setting Q+ to 1

OR

Q+

20

Storing and Accessing 1 Bit

Bistable Element

q
Q+ R
|
9 Q-
Q S
qg=0or1

Setting Q+ to 1

Storing and Accessing 1 Bit

Bistable Element

q
Q+ R
|
9 Q-
Q S
qg=0or1

Setting Q+ to 1
0 0 1

R 1 R 1 0
===
s1 OQ' 501

Setting Q+ to 0

Q+

Q-

OR

Q+

20

Storing and Accessing 1 Bit

Bistable Element

Q+ OR Q+
|
1 A_ -
Q S Q
qg=0or1
Setting Q+ to 1 Setting Q+ to 0

0 0 1

R 1 R 1 0 R ' q
Q+ ..— Q+ ..— Q+

0 % 1 m !
- - s 0) >Del-o S) > ~ o

20

Storing and Accessing 1 Bit

Bistable Element

Q+ OR Q+
|
1 A_ -
Q S Q
qg=0or1
Setting Q+ to 1 Setting Q+ to 0

0 0 1

R 1 R 1 0 R ' q
Q+ ..— Q+ ..— Q+

0 % 1 m !
- - s 0) >Del-o s) ~ o

20

Storing and Accessing 1 Bit

Bistable Element

q
Q+ R OR Q+
!
q - —
Q s Q
qg=0o0r1
Q+ value unchanged
i |
Setting Q+ to 1 Setting Q+ to 0 l.e., stored!

0 0 1 0 \q

R 1 R 1 0 R q
Q+ ..— Q+ .I ’. Q+

1

1 -
s "o (P Tt O — g9,

20

Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R OR Q+
|
d A_ _
Q S Q
qg =0or1

Q+ value unchanged

' !
Setting Q+ to 1 Setting Q+ to 0 l.e., stored!

0 0 1 0 'q

R 1 R 1 0 R q
Q+ ..— Q+ ..— Q+

0 ﬂh 1 m !
- - s 0) >Del-o s) ~ o

20

Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R OR Q+
|
d A_ _
Q S Q
qg =0or1

Q+ value unchanged
i.e., stored!

Setting Q+ to 1 Setting Q+ to 0
0 0

R%i . |
1 0

S Q- S

If R and S are different, Q+ is the same as S

20

Building on top of R-S Latch

D

Data %—[>O— R

Control C | S

If R and S are different, Q+ is the same as S

Q+

21

Building on top of R-S Latch

Data

Control

If R and S are different, Q+ is the same as S

D

a_[>o_

C

S

Q+

21

Building on top of R-S Latch

D

Data %—[>O— R

Control C — S

If R and S are different, Q+ is the same as S

d d 'd

Q+ will continuously
change as d changes

Q+

21

Building on top of R-S Latch

D

Data ~——¢ >o—

C

Control |

If R and S are different, Q+ is the same as S

Storing Data (Latching)

d >c!d

—

'd 'd d
Q+

d d 'd

Q+ will continuously
change as d changes

Q+

21

Building on top of R-S Latch

D

Data 40—[>O— R

— Q+

Control C | S

If R and S are different, Q+ is the same as S

Storing Data (Latching)

d [L>'°!d 'd 'd d d
— Q+

d d 'd

Q+ will continuously

change as d changes o

Building on top of R-S Latch

D

Data 40—[>O— R

— Q+

Control C | S

If R and S are different, Q+ is the same as S

Storing Data (Latching)

d >c!d 'd 'd d d
— Q+

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d

21

Building on top of R-S Latch

D
Data 40—[>O— R
— Q+
Q-
Control c — S

If R and S are different, Q+ is the same as S

Storing Data (Latching) Holding Data
d o 1d 1d 'd d d
| Q+
1 Q- 0

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d

21

Building on top of R-S Latch

D
Data 40—[>O— R
— Q+
D Latch
Q_
Control C — S

If R and S are different, Q+ is the same as S

Storing Data (Latching) Holding Data
d o 1d 1d 'd d d
| Q+
1 Q- 0

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d

21

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d '1d d
[>o

C
— Q+ -
D
1 Q-
C d d 'd Q+

Time

22

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d '1d d
[>o

— Q+ CJ
D
1 Q-
C d d 1d Q+_ |

Time

22

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

c;lw_
— Q+
D
1 Q- (
C d d 'd Q+_ N

Time

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

— Q+ c \
D e—
1 Q-
C d d 'd Q+ >

Time

22

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

— Q+ c \
D
1 Q- /
C d d 'd Q+ I\

22

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

— Q+ c \
D
1 Q-
C d d 'd Q+ >

Time

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

— Q+ c \
D
1 Q-
C d d 'd Q+ >

Time

D-Latch is “Transparent”

Latching Changing D

Da 1d 1d 1d d
[>o

— Q+ c \

(@)
=
()
|
O
AN
e s 4
T~
e~

Time

* \When you want to store d, you have to first set C to 1, and then set d

D-Latch is “Transparent”

Latching Changing D
Da4d 1d 1d 'd d
> C
— Q+ \
D N N
1 -)]
C d d 'd Q+ > \, » (
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

22

D-Latch is “Transparent”

Latching Changing D
Da4d 1d 1d '1d d
> C
— Q+ \
D N N
1 -)]
C d d 'd Q+ > \, » (
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O

22

D-Latch is “Transparent”

Latching Changing D
Da4d 1d 1d '1d d
> C
— Q+ \
D N N
1 -)]
C d d 'd Q+ > \, » (
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1

22

D-Latch is “Transparent”

Latching Changing D
Dd 1d 1d 'd d
e C
— Q+ w
D N N
1 -)]
C d d 'd Q+ > \, . (
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1
* D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

22

Edge-Triggered Latch (Flip-Flop)

23

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Control

23

Edge-Triggered Latch (Flip-Flop)

D

Data

¢ [

U

Control 0

23

Edge-Triggered Latch (Flip-Flop)

D

Dat R

ata l: N Q+
1 Q-

C|| [[< S

Control 0

U

23

Edge-Triggered Latch (Flip-Flop)

D

Data l: R
- Q+
]
oo 0 i% o-
C) . S

Control 0

23

Edge-Triggered Latch (Flip-Flop)

D

Data l: R
- Q+
]
oo 0 i% o-
C) . S

Control 1

23

Edge-Triggered Latch (Flip-Flop)

D

i —i%j
1
I—[>o—-‘>o—‘>o—_\ 0 ->1
C / 1 S

Control 1

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0 ->1
C . T

Control 1

23

Edge-Triggered Latch (Flip-Flop)

D

-

Data

1->0

I—[>o—-‘>o—‘>o—_\ 0->1->0
C . -

Control 1

23

Edge-Triggered Latch (Flip-Flop)

D

-

Data

Trigger

1->0
I—[>o—-‘>o—‘>o—_\ 0->1 ->0‘_

C - T

ontrol 1

C —

—)

D R (
Q+ .

Time

23

Edge-Triggered Latch (Flip-Flop)

D [
Dat R
o T Q+
1->0 Q
I—[>O—-‘>o—‘>o—_\ 0->1 ->0’_ -
C - T S
ontrol 1)
Trigger
c—— e Flip-flop: Only latches data for a

brief period

o
|
"]

Time

23

Edge-Triggered Latch (Flip-Flop)

Q+

Flip-flop: Only latches data for a
brief period

¢ Value latched depends on data

> >
Data i
1->0
(oo 021200
C - T
ontrol 1 .
Trigger
C) *
T
v
D —
Q+

Time

as C rises (i.e., 0—>1); usually
called at the rising edge of C

23

Edge-Triggered Latch (Flip-Flop)

-

Data

¢ [P

N\ 0->1->0] |

Control

T
Trigger

Q+

e Flip-flop: Only latches data for a
brief period

¢ Value latched depends on data

as C rises (i.e., 0—>1); usually
called at the rising edge of C

e Output remains stable at all

other times

23

Why Use a Flip-Flop?

0.0 ns 10.0ns ¢ Because the data we want to store

might lbe temporarily changing before
it settles down (due to glitch). We
want to capture only the final value.

e [f we had a transparent D latch, the
latched value would change with F,
l.e., temporal glitches will be
temporarily stored as well.

o With a flip flop, we can store data only
A when its value settles: raise the control
signal of the flop when F settles.

m O W >

ol

B =9 DFF

24

Registers

Structure
T p Q+ o,
ig | |2 Q+ O
i | |2 Q+ 0
z I le o 0,4
i3 | |2 Q+ 0,
i | o Q+ 0,
g | e o 0,
iy | |2 Q+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal

Registers

Structure

i, p Q+ o,

ig | |2 a+ O

i | |2 a+ 0

i e Q+ 0, |—p —p O
i3 | |2 a+ 0,

Iy | |2 Q+ 0, |

Iy | o Q+ 0, C

i | |2 a+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal

Register Operation

State = x

Input =y

Output = x

—>

>

26

Register Operation

State = x
Input =y| | Output = x
—DIX—>

C Rises

26

Register Operation

State = x
Input =y| | Output = x
—DIX—>

State =y

C Rises

Output =y

— —

>

26

Register Operation

State = x State =y

Input =y| | Output = x C Rises Output =y

DX =D — — —p Dy—>

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

Register Operation

State = x
Input =y| | Output = x
DX

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

C Rises

State =y

Output =y

D

Output continuously produces
y after the rising edge unless
you cut off power.

26

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

27

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock |

[

27

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

— —

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock |

In ?Xo

=l

P Xs

27

Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock | |
In|_ % X X X Xy X5
Out X X4 X5 X3 Xy X5

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

28

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

Cycle time

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

28

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.

Cycle time

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5

28

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
e 1 GHz CPU means the clock frequency is 1 GHz

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

28

Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
e 1 GHz CPU means the clock frequency is 1 GHz

e The cycle time is 1/10"9 =1 ns

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

28

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

Register File

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out

Register File

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA

srcA Read

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA

srcA Read
1 —

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA

srcA Read
1 —

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA

srcA Read
1 —

W N = O
=

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA valW

Write dstw

srcA Read
1 —

W N = O
=

Clock

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA

Write dstw

srcA Read
1 —

W N = O
=

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA

Write dstw

srcA Read
1 —

W N = O
=

1 "~ Rising
Clock __| edge

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

N

W N == O
S ||<
-

valA valW

Write dstw

srcA Read
1 —

1 "~ Rising
Clock __| edge

29

Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
e How do we build a register file out of individual registers??

Register File

N

W N == O
S ||<
-

valA valW

Write dstw

srcA Read
1 —

1 "~ Rising
Clock __| edge

29

Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

Register 3

O OO OO0 O| O

30

Register File Read

e Continuously read a register independent of the clock signal
Read Reg ID

1l

Register 0 —

Register 1 ——» Out
41 |—»
MUX

Register 2—

O OO OO0 O| O

Register 3 >

30

Register File Write

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

31

Register File Write

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

31

Register File Write

Clock

Data

Register 0

Register 1

3o 2fo 8

Register 2

2=

O

Register 3

Read Reg ID

1l

4:1
MUX

Out

31

Register File Write

e Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
+—CO _
Register 0 —
W1 — D
Q —»
o)) *—ICH)
2 Register 1 ——» Out
p +— D 41 |——>
T W0 t$—C2 . MUX
= —> 5 Register 2—
*—C3 _
Register 3 >
Data — D

31

Register File Write

e Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
I 0Registero—>
o W I | °
=] 0 0 O© 1 o
% == o o 1 o [t—D Register 1 — 4:1 —>OUt
Ewo SN o 1 o o fC2_ S
= —>-- S mananees || 18 Register 2—
*—1C3
Register 3 >
Data — D

31

Decoder

2
mm co

1
0
0

:

0
0
0

W1 -

_CO0

—C1

_C2

_GC3

Decoder

2
mm co

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1 -

_CO0

—C1

_C2

_GC3

Decoder

z
CCIEIEIEIE .

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1

B

[\

JOUC

CO

CT

C2

C3

Register File Write

Clock
o_ .
Register 0
Q —»
& 1 Register 1
2 D egister
2
= Cc2
= —» 5 Register 2
C3 _
Register 3
Data D

Read Reg ID

1l

4:1
MUX

Out

33

Register File Write

Clock

Write Reg ID

|

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

33

Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

33

Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out

33

Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

1l

4:1
MUX

Read Reg ID

Out

33

Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

1l

4:1
MUX

-

Read Reg ID

Out

* This implementation can read 1 register and write 1 register at
the same time: 1 read port and 1 write port

33

Multi-Port Register File

e \What if we want to read multiple registers at the same time?
Read Reg ID

Clock l l
0
CO T
0 } S Register 0 —
Q —»
2 e et
2 -4 Register 1 ——» Out1
9 Decc.)der = 41
29 0 +—)——»C2 MUX
s —> Register 2—
0 &—— —>(C3
D— Register 3 >
Data ¢

34

Multi-Port Register File

e \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

Read Reg ID

b

C1 i
Register 1
D

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX

34

Multi-Port Register File

e \What if we want to read multiple registers at the same time?

Clock

0
Register 0

Read Reg ID

b

lo
|
¥

C1 i
2-4 b Register 1

Write Reg ID

l_.

D

> Outi
4:1 |— >
MUX

21 s

Register 3
Data — D

e This register file has 2 read ports and 1 write
port. How many ports do we actually need?

Reg ID 2

4:-1 |Out2
MUX

34

Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

Read Reg ID

b

1
Register 1

C2

Register 2

> Outi
4:1 |— >
MUX

Data

Seiteey

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX

35

