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Announcement

* Programming assignment 3 out.

e If you don’t see your lab2 score on the scoreboard, talk to a TA.

12 13 14 @ 16 17

Today

19 20 21 22 23 24

26 27 28 Mar 1 2 3
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Today: Circuits Basics

e Basics



Delay of Bit Equal Circuit

— KLD—

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7
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« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis
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« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis



Glitch/Hazard

10.0 ns

0.0 ns

A

° \

C

F
A
B

_{>o_

C




Glitch/Hazard

0.0 ns 10.0 ns

m O W >

@_




Glitch/Hazard

0.0 ns 10.0 ns

e A glitch is an unnecessary
signal transition without
functionality.

m O W >

®_




Glitch/Hazard

m O W >

0.0 ns

10.0 ns

@_

e A glitch is an unnecessary
signal transition without
functionality.

« Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.



Glitch/Hazard

0.0 ns 10.0 ns

e A glitch is an unnecessary
signal transition without
functionality.

« Why is it bad? When

\
transistors switch they
®— consume power, but the
power consumed during a

glitch is a waste.

A « Without care, glitch power
dissipation is 20%-70% of
B — F total power dissipation.
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64-bit Equality
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e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0
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e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0

bool out = (s&&a) || (!'s&é&b)

MUX Out

Bit MUX

— out




4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11
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4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

s[O]

ki

Bit MUX

s[1]

ki

Bit MUX

ki

Bit MUX

— out




4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

s[0] ! V{ Bit MUX
A s[1] . :

4.7 KZ Bit MUX
B 4.3

s[0] ! K{ Bit MUX
What’s the latency of

D this implementation?

—

— out




Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.
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Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

* A standard cell library is a collection of well defined and
appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

* The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

e Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

* Logic design uses the gate-level abstractions
* VLSI tells you how the gates are implemented at transistor-level

10



Recall: Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.
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11 00 1
11 1(1 1
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Recall: Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

S =(~A&~B &Ci)
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

| (A& B & Cin)

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cip)
(A& B& Ci)
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Recall: 1-bit Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.
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Add two bits and carry-in,

produce one-bit sum and carry-out.
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Recall: 1-bit Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A

B

g

Cw=@A&B&Q@)

(A & ~B & Cin)

(A& B & ~Ci)
)
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out

+—— (OR Gates

12



Recall: Four-bit Adder

A, B, A, B, A, B
| | |
A B A B A B

Full C. Full € Full

Adder Adder Adder
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Recall: Four-bit Adder

* Ripple-carry Adder
e Simple, but performance linear to bit width

A, B, A, B, A, B,
| | |
A B A B A B
Full € Full € Full
Adder Adder Adder
C. S C.. S c S
c:out SS S2 S1
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Recall: Four-bit Adder

* Ripple-carry Adder

e Simple, but performance linear to bit width
* Carry look-ahead adder (CLA)

* Generate all carriers simultaneously

A, B, A, B, A, B,
| | |
A B A B A B

Full ©C. Full & Full

Adder Adder Adder

C. S C.. S C. S




Arithmetic Logic Unit

Y —,
'E‘ _Result of some computation
U between X and Y

X — B i OF

....... .’ CF

e An ALU performs multiple kinds of computations.
* The actual computation depends on the selection signal s.
* Also sets the condition codes (status flags)
e For instance:
* X+ Y whens==00
* X-Y when s == 01
e X& Y whens==10
* XAY when s == 11
e How can this ALU be implemented?

14



Arithmetic Logic Unit

* Implement 4 different circuits, one for each operation.
* Then use a MUX to select the results

Y A Y A Y A Y A
X —™B ~i. OF X —™B ~#. OF X —™B A.. OF X —™B <. OF
------- ZF LI ZF LI ZF LI ZF
.......... CF e O e o)
X+Y X-Y X&Y XY




Today: Circuits Basics

* Circuits for storing data

16



The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
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The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
e Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.
* There are many different ways to store bits. They have trade-offs.

17



Build a 1-Bit Storage

D

Some Logic

* What we would like:
e D is the data we want to store (O or 1)
e C is the control signal
 When Cis 1, Q becomes D (i.e., storing the data)
« When C is 0, Q doesn’t change with D (data stored)
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Bitstable Element
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Bitstable Element

Bistable Element
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Bitstable Element

Vi,,=V, Bistable Element

Q+ continuously outputs q.
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Storing and Accessing 1 Bit

Bistable Element

20



Storing and Accessing 1 Bit

Bistable Element

OR

Q+

20



Storing and Accessing 1 Bit

Bistable Element

OR

Q+

20



Storing and Accessing 1 Bit

Bistable Element

q
Q+ R
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Setting Q+ to 1
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Storing and Accessing 1 Bit

Bistable Element

q
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Setting Q+ to 1
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===
s1 OQ' 501
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Storing and Accessing 1 Bit

Bistable Element

Q+ OR Q+
|
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Storing and Accessing 1 Bit

Bistable Element

Q+ OR Q+
|
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Storing and Accessing 1 Bit

Bistable Element

q
Q+ R OR Q+
!
q - —
Q s Q
qg=0o0r1
Q+ value unchanged
i |
Setting Q+ to 1 Setting Q+ to 0 l.e., stored!

0 0 1 0 \q

R 1 R 1 0 R q
Q+ ..— Q+ .I ’. Q+

1

1 -
s "o (P Tt O — g9,
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Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R OR Q+
|
d A_ _
Q S Q
qg =0or1

Q+ value unchanged

' !
Setting Q+ to 1 Setting Q+ to 0 l.e., stored!

0 0 1 0 'q

R 1 R 1 0 R q
Q+ ..— Q+ ..— Q+

0 ﬂh 1 m !
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Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R OR Q+
|
d A_ _
Q S Q
qg =0or1

Q+ value unchanged
i.e., stored!

Setting Q+ to 1 Setting Q+ to 0
0 0

R%i . |
1 0

S Q- S

If R and S are different, Q+ is the same as S
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Building on top of R-S Latch

D

Data %—[>O— R

Control C | S

If R and S are different, Q+ is the same as S

Q+
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Building on top of R-S Latch
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Building on top of R-S Latch
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Building on top of R-S Latch

D
Data 40—[>O— R
— Q+
Q-
Control c — S

If R and S are different, Q+ is the same as S

Storing Data (Latching) Holding Data
d o 1d 1d 'd d d
| Q+
1 Q- 0

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d
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Building on top of R-S Latch

D
Data 40—[>O— R
— Q+
D Latch
Q_
Control C — S

If R and S are different, Q+ is the same as S

Storing Data (Latching) Holding Data
d o 1d 1d 'd d d
| Q+
1 Q- 0

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d

21



D-Latch is “Transparent”

Latching Changing D

Da 1d 1d '1d d
[>o

C
— Q+ -
D
1 Q-
C d d 'd Q+

Time
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D-Latch is “Transparent”

Latching Changing D
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D-Latch is “Transparent”

Latching Changing D
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* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated
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* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1
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D-Latch is “Transparent”

Latching Changing D
Dd 1d 1d 'd d
e C
— Q+ w
D N N
1 - )]
C d d 'd Q+ > \, . (
Time

* \When you want to store d, you have to first set C to 1, and then set d

® There is a propagation delay of the combinational circuit from D to Q+.
So hold C for a while until the signal is fully propagated

® Then set C to 0. Value latched depends on value of D as C goes to O
® D-latch is transparent when C is 1
* D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

22



Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)

D

Data l: R
- Q+
]
oo 0 i% o-
C ) . S

Control 0
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Edge-Triggered Latch (Flip-Flop)

D

Data l: R
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C ) . S

Control 1
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Edge-Triggered Latch (Flip-Flop)

D

i —i%j
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Control 1




Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)
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Edge-Triggered Latch (Flip-Flop)

D
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Data
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Edge-Triggered Latch (Flip-Flop)

D [
Dat R
o T Q+
1->0 Q
I—[>O—-‘>o—‘>o—_\ 0->1 ->0’_ -
C - T S
ontrol 1 )
Trigger
c—— e Flip-flop: Only latches data for a

brief period
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Edge-Triggered Latch (Flip-Flop)

Q+

Flip-flop: Only latches data for a
brief period

¢ Value latched depends on data

> >
Data i
1->0
(oo 021200
C - T
ontrol 1 .
Trigger
C ) *
T
v
D —
Q+

Time

as C rises (i.e., 0—>1); usually
called at the rising edge of C
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Edge-Triggered Latch (Flip-Flop)

-

Data

¢ [P

N\ 0->1->0] |

Control

T
Trigger

Q+

e Flip-flop: Only latches data for a
brief period

¢ Value latched depends on data

as C rises (i.e., 0—>1); usually
called at the rising edge of C

e Output remains stable at all

other times
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Why Use a Flip-Flop?

0.0 ns 10.0ns ¢ Because the data we want to store

might lbe temporarily changing before
it settles down (due to glitch). We
want to capture only the final value.

e [f we had a transparent D latch, the
latched value would change with F,
l.e., temporal glitches will be
temporarily stored as well.

o With a flip flop, we can store data only
A when its value settles: raise the control
signal of the flop when F settles.

m O W >

ol

B =9 DFF
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Registers

Structure
T p Q+ o,
ig | |2 Q+ O
i | |2 Q+ 0
z I le o 0,4
i3 | |2 Q+ 0,
i | o Q+ 0,
g | e o 0,
iy | |2 Q+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal



Registers

Structure

i, p Q+ o,

ig | |2 a+ O

i | |2 a+ 0

i e Q+ 0, |—p —p O
i3 | |2 a+ 0,

Iy | |2 Q+ 0, |

Iy | o Q+ 0, C

i | |2 a+ 0,

C

e Stores several bits of data
e Collection of edge-triggered latches (D Flip-flops)
e | oads input on rising edge of the C signal



Register Operation

State = x

Input =y

Output = x

—>

>
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Register Operation

State = x
Input =y| | Output = x
—DIX—>

C Rises
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Register Operation

State = x
Input =y| | Output = x
—DIX—>

State =y

C Rises

Output =y

— —

>
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Register Operation

State = x State =y

Input =y| | Output = x C Rises Output =y

DX =D — — —p Dy—>

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register



Register Operation

State = x
Input =y| | Output = x
DX

e Stores data bits
e For most of time acts as barrier between input and output
e As C rises, loads input

e S0 you’d better compute the input before the C signal rises if you want
to store the input data to the register

C Rises

State =y

Output =y

D

Output continuously produces
y after the rising edge unless
you cut off power.
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Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

27



Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock |

[
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Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

— —

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock |

In ?Xo

=l

P Xs
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Clock Signal

State = x
Input =y| | Output = x
DX

C Rises

State =y

Output =y

D

* A special C: periodically oscillating between 0 and 1

* That’s called the clock signal. Generated by a crystal oscillator
inside your computer.

Clock | |
In|_ % X X X Xy X5
Out X X4 X5 X3 Xy X5




Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.

Cycle time
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.

Cycle time

clock [~ 1 M1 M1 M1 11

In[__ %o X : X : X3 - X4 i X5

Out Xo Xy Xo X3 Xq X5
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
e 1 GHz CPU means the clock frequency is 1 GHz

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5
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Clock Signal

e Cycle time of a clock signal: the time duration between two rising edges.
e Frequency of a clock signal: how many rising (falling) edges in 1 second.
e 1 GHz CPU means the clock frequency is 1 GHz

e The cycle time is 1/10"9 =1 ns

Cycle time

Clock | |
In|_ % X X X Xy X5
Out Xg Xg X; X3 Xq X5

28



Register File

e A register file consists of a set of registers that you can individually
read from and write to.

Register File

W N = O
=
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e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
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e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out

Register File

valA

srcA Read
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Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
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Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA valW

Write dstw

srcA Read
1 —
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Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File

valA

Write dstw

srcA Read
1 —
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e A register file consists of a set of registers that you can individually
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Register File
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e A register file consists of a set of registers that you can individually
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* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value

Register File
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Register File

e A register file consists of a set of registers that you can individually
read from and write to.

* To read: give a register file ID, and read the stored value out
e To write: give a register file ID, a new value, overwrite the old value
e How do we build a register file out of individual registers??

Register File

N

W N == O
S ||<
-

valA valW

Write dstw

srcA Read
1 —

1 "~ Rising
Clock __| edge

29



Register File Read

e Continuously read a register independent of the clock signal

Register 0

Register 1

Register 2

Register 3

O OO OO0 O| O
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Register File Read

e Continuously read a register independent of the clock signal
Read Reg ID

1l

Register 0 —

Register 1 ——» Out
41 |—»
MUX

Register 2—

O OO OO0 O| O

Register 3 >
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Register File Write

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Clock

Data

Register 0

Register 1

3o 2fo 8

Register 2

2=

O

Register 3

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

e Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
+—CO _
Register 0 —
W1 — D
Q —»
o)) *—ICH )
2 Register 1 ——» Out
p +— D 41 |——>
T W0 t$—C2 . MUX
= —> 5 Register 2—
*—C3 _
Register 3 >
Data — D
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Register File Write

e Only write the a specific register when the clock rises. How??
Read Reg ID

Clock ‘ |
I 0Registero—>
o W I | °
=] 0 0 O© 1 o
% == o o 1 o [t—D Register 1 — 4:1 —>OUt
Ewo SN o 1 o o fC2_ S
= —>-- S mananees || 18 Register 2—
*—1C3
Register 3 >
Data — D
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Decoder

2
mm co

1
0
0

:

0
0
0

W1 -

_CO0

—C1

_C2

_GC3



Decoder

2
mm co

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1 -

_CO0

—C1

_C2

_GC3



Decoder

z
CCIEIEIEIE .

0 1

1 0

0 0
CO =IW1 & WO
C1=1IW1 & WO
C2 =W1 & WO

C3=W1&W0

|

0
0
0

W1

B

[\

JOUC

CO

CT

C2

C3



Register File Write

Clock
o_ .
Register 0
Q —»
& 1 Register 1
2 D egister
2
= Cc2
= —» 5 Register 2
C3 _
Register 3
Data D

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Clock

Write Reg ID

|

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

Data

C3

Register 3
D g

Read Reg ID

1l

4:1
MUX

Out
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Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

1l

4:1
MUX

Read Reg ID

Out
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Register File Write

Clock

Write Reg ID
lo

l_.

2:4
Decoder

Data

0
Register 0

C1 i
Register 1
D

C2

Register 2
D g

C3

Register 3
D g

1l

4:1
MUX

-

Read Reg ID

Out

* This implementation can read 1 register and write 1 register at
the same time: 1 read port and 1 write port
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Multi-Port Register File

e \What if we want to read multiple registers at the same time?
Read Reg ID

Clock l l
0
CO T
0 } S Register 0 —
Q —»
2 e et
2 -4 Register 1 ——» Out1
9 Decc.)der = 41
29 0 +— )——»C2 MUX
s —> Register 2—
0 &—— —>(C3
D— Register 3 >
Data ¢

34



Multi-Port Register File

e \What if we want to read multiple registers at the same time?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

Read Reg ID

b

C1 i
Register 1
D

C2

Register 2
D g

> Outi
4:1 |— >
MUX

Data

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX
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Multi-Port Register File

e \What if we want to read multiple registers at the same time?

Clock

0
Register 0

Read Reg ID

b

lo
|
¥

C1 i
2-4 b Register 1

Write Reg ID

l_.

D

> Outi
4:1 |— >
MUX

21 s

Register 3
Data — D

e This register file has 2 read ports and 1 write
port. How many ports do we actually need?

Reg ID 2

4:-1 |Out2
MUX
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Multi-Port Register File

* |s this correct? What if we don’t want to write anything?

Clock

Write Reg ID
lo

l_.

2:4
Decoder

0
Register 0

Read Reg ID

b

1
Register 1

C2

Register 2

> Outi
4:1 |— >
MUX

Data

Seiteey

C3

Register 3
D g

Reg ID 2

4:-1 |Out2
MUX
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