
CSC 252: Computer Organization 
 Spring 2023: Lecture 12 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcement
• Programming assignment 3 out.

• If you don’t see your lab2 score on the scoreboard, talk to a TA.

Today

Due

Carnegie Mellon

!3

So far in 252…

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

!4

Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�5

Bit equal
a

b

eq

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7

�5

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�5

Bit equal
a

b

eq1

4.3

4.7

Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”

• The path between an input and the output that the maximum delay
• Estimating the critical path delay is called static timing analysis

�5

Bit equal
a

b

eq1

4.3

4.7

Critical Path

Carnegie Mellon

Glitch/Hazard

�6

A

B

C

F

F

Carnegie Mellon

Glitch/Hazard

�6

A

B

C

F

F

Carnegie Mellon

Glitch/Hazard

�6

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

F

F

Carnegie Mellon

Glitch/Hazard

�6

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

• Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

F

F

Carnegie Mellon

Glitch/Hazard

�6

A

B

C

• A glitch is an unnecessary
signal transition without
functionality.

• Why is it bad? When
transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

• Without care, glitch power
dissipation is 20%-70% of
total power dissipation.F

F

Carnegie Mellon

64-bit Equality

�7

=
B

A

Eq

Carnegie Mellon

64-bit Equality

�7

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�8

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�8

bool out = (s&&a)||(!s&&b)

s

B

A
OutMUX

Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�8

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�9

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�9

s[0]

A

B

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�9

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�9

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�9

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of
this implementation?

1

4.7
4.3

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.

!10

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGO chips, using which you generate

the gate level circuit design for complex functionalities.

!10

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGO chips, using which you generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

!10

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGO chips, using which you generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

!10

Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of

outputs of a gate (fan-out) will affect the gate delay.
• Think of logic gates as LEGO chips, using which you generate

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and

appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

• The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

• Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

• Logic design uses the gate-level abstractions
• VLSI tells you how the gates are implemented at transistor-level

!10

Carnegie Mellon

!11

Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Carnegie Mellon

!11

Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)

 | (A & ~B & Cin)

 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

!12

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

Carnegie Mellon

!12

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!12

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

 | (A & ~B & Cin)
 | (A & B & ~Cin)

 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

!13

Recall: Four-bit Adder

Carnegie Mellon

!13

Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

!13

Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

OF
ZF
CF

Arithmetic Logic Unit

�14

A
L
U

Y

X

Result of some computation
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:

• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11

• How can this ALU be implemented?

Carnegie Mellon

Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�15

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out

Carnegie Mellon

!16

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

!17

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

Carnegie Mellon

!17

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.

Carnegie Mellon

!17

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.

Carnegie Mellon

!17

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.

Carnegie Mellon

!17

The Need for Storing Bits
• Assembly programs set architecture (processor) states.

• Register File
• Status Flags
• Memory
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.

Carnegie Mellon

Build a 1-Bit Storage

�18

Q

D

C

Some Logic

•What we would like:

• D is the data we want to store (0 or 1)
• C is the control signal

• When C is 1, Q becomes D (i.e., storing the data)
• When C is 0, Q doesn’t change with D (data stored)

Carnegie Mellon

Bitstable Element

�19

Vin V1

V2

Vin = V2

Carnegie Mellon

Bitstable Element

�19

Vin V1

V2

Vin = V2

1

Carnegie Mellon

Bitstable Element

�19

Vin V1

V2

Vin = V2

1
0

Carnegie Mellon

Bitstable Element

�19

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�19

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Carnegie Mellon

Bitstable Element

�19

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.

Carnegie Mellon

Storing and Accessing 1 Bit

�20

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Carnegie Mellon

Storing and Accessing 1 Bit

�20

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�20

0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�20

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�20

1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

Storing and Accessing 1 Bit

�20

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�20

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�20

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�20

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�20

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�20

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d
0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

Building on top of R-S Latch

�21

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+.

So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.

�22

C

D

Q+

Time

Changing DLatching

1

d !d !d !d d

d d !d

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

D

C

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control 0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control 0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control 0

1
0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

1
0

1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

�23

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period

�23

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C

�23

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a
brief period
• Value latched depends on data

as C rises (i.e., 0–>1); usually
called at the rising edge of C
•Output remains stable at all

other times
�23

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0

Carnegie Mellon

Why Use a Flip-Flop?

�24

A

B

C

FDFF

F

F

• Because the data we want to store
might be temporarily changing before
it settles down (due to glitch). We
want to capture only the final value.

• If we had a transparent D latch, the
latched value would change with F,
i.e., temporal glitches will be
temporarily stored as well.

•With a flip flop, we can store data only
when its value settles: raise the control
signal of the flop when F settles.

Carnegie Mellon

Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal

�25

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

C

Structure

Carnegie Mellon

Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal

�25

I O

C

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

D
C Q+

i7
i6
i5
i4
i3
i2
i1
i0

o7

o6

o5

o4

o3

o2

o1

o0

C

Structure

Carnegie Mellon

Register Operation

�26

State = x

Output = xInput = y
x

C

Carnegie Mellon

Register Operation

�26

State = x

Output = xInput = y
x

C Rises

C

Carnegie Mellon

Register Operation

�26

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want

to store the input data to the register

�26

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want

to store the input data to the register

�26

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C Output continuously produces
y after the rising edge unless
you cut off power.

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�27

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�27

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�27

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

x0 x1 x2 x3 x4 x5In

Carnegie Mellon

Clock Signal

• A special C: periodically oscillating between 0 and 1

• That’s called the clock signal. Generated by a crystal oscillator

inside your computer.

�27

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.

�28

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.

�28

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.

�28

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

�28

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

• The cycle time is 1/10^9 = 1 ns

�28

Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

1 x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out

1 x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out

ReadsrcA

valA 1 x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out

ReadsrcA

valA 1
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out

ReadsrcA

valA 1x
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value

ReadsrcA

valA 1x
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value

Read WritesrcA

valA

dstW

valW1x
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value

Read WritesrcA

valA

dstW

valW1x
1

y
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value

Read WritesrcA

valA

dstW

valW1x
1

Rising
edge

y
1

x

Register File

0 z

w2

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value

Read WritesrcA

valA

dstW

valW1x
1

Rising
edge

y
1

x

Register File

0 z

w2

y

Clock

t3

Carnegie Mellon

Register File

!29

• A register file consists of a set of registers that you can individually
read from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value
• How do we build a register file out of individual registers??

Read WritesrcA

valA

dstW

valW1x
1

Rising
edge

y
1

x

Register File

0 z

w2

y

Clock

t3

Carnegie Mellon

Register File Read

!30

Register 0

Register 1

Register 2

Register 3

D
C

D
C

D
C

D
C

• Continuously read a register independent of the clock signal

Carnegie Mellon

Register File Read

!30

Register 0

Register 1

Register 2

Register 3

D
C

D
C

D
C

D
C

4:1
MUX

Read Reg ID

Out

• Continuously read a register independent of the clock signal

Carnegie Mellon

Register File Write

!31

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

4:1
MUX

Read Reg ID

Out

Carnegie Mellon

Register File Write

!31

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

4:1
MUX

Read Reg ID

Out

Carnegie Mellon

Register File Write

!31

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

4:1
MUX

Read Reg ID

Out

Clock

Carnegie Mellon

Register File Write

!31

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

4:1
MUX

Read Reg ID

Out

Clock

• Only write the a specific register when the clock rises. How??

W
rit

e
R

eg
 ID

W1

W0

Carnegie Mellon

Register File Write

!31

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

4:1
MUX

Read Reg ID

Out

Clock

• Only write the a specific register when the clock rises. How??

W1 W0 C3 C2 C1 C0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

W
rit

e
R

eg
 ID

W1

W0

Carnegie Mellon

Decoder

!32

W1 W0 C3 C2 C1 C0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

W1
W0 C0

C1

C2

C3

Carnegie Mellon

Decoder

!32

C0 = !W1 & !W0

C1= !W1 & W0

C2 = W1 & !W0

C3 = W1 & W0

W1 W0 C3 C2 C1 C0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

W1
W0 C0

C1

C2

C3

Carnegie Mellon

Decoder

!32

C0 = !W1 & !W0

C1= !W1 & W0

C2 = W1 & !W0

C3 = W1 & W0

W1 W0 C3 C2 C1 C0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

W1
W0 C0

C1

C2

C3

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

0

1

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

0

1

0

0

0

1

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

0

1

0

0

0

1

Carnegie Mellon

Register File Write

!33

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out

0

1

0

0

0

1

• This implementation can read 1 register and write 1 register at
the same time: 1 read port and 1 write port

Carnegie Mellon

Multi-Port Register File

!34

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

4:1
MUX

Read Reg ID

Out1

•What if we want to read multiple registers at the same time?

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

0

1

0

0

0

1

Carnegie Mellon

Multi-Port Register File

!34

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

4:1
MUX

Read Reg ID

Out1

•What if we want to read multiple registers at the same time?

4:1
MUX

Out2

Read
Reg ID 2

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

0

1

0

0

0

1

Carnegie Mellon

Multi-Port Register File

!34

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

4:1
MUX

Read Reg ID

Out1

•What if we want to read multiple registers at the same time?

4:1
MUX

Out2

Read
Reg ID 2

• This register file has 2 read ports and 1 write
port. How many ports do we actually need?

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

0

1

0

0

0

1

Carnegie Mellon

Multi-Port Register File

!35

Register 0

Register 1

Register 2

Register 3

D
C0

D
C1

D
C2

D
C3

Data

Clock

2:4
Decoder

W
rit

e
R

eg
 ID

4:1
MUX

Read Reg ID

Out1

0

1

0

0

0

1

• Is this correct? What if we don’t want to write anything?

4:1
MUX

Out2

Read
Reg ID 2

