
CSC 252: Computer Organization 
 Spring 2023: Lecture 19 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

2

•Cache problem set: https://www.cs.rochester.edu/courses/252/
spring2023/handouts.html Won’t be graded.

•Mid-term solution posted: https://www.cs.rochester.edu/
courses/252/spring2023/handouts.html

Today

Lab 4 Due

https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html

Carnegie Mellon

Announcements

3

•Two videos from last year:
• https://rochester.hosted.panopto.com/Panopto/Pages/

Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1
• https://rochester.hosted.panopto.com/Panopto/Pages/

Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76

https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

4

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork
• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process
• Returns child’s PID to the parent process

5

Carnegie Mellon

Process Graph Example

6

int main()
{
 pid_t pid;
 int x = 1;

 pid = Fork();
 if (pid == 0) { /* Child */
 printf("child : x=%d\n", ++x);
 exit(0);
 }

 /* Parent */
 printf("parent: x=%d\n", --x);
 exit(0);
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

Carnegie Mellon

fork Example: Two consecutive forks

8

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Two consecutive forks

8

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

8

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Two consecutive forks

8

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:
L0
L1
Bye
Bye
L1
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
L1
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

9

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in parent

9

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

9

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

9

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {
 printf("L1\n");
 if (fork() != 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:
L0
L1
Bye
Bye
L2
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

fork Example: Nested forks in children

10

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

fork Example: Nested forks in children

10

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

10

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in children

10

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:
L0
Bye
L1
L2
Bye
Bye

Infeasible output:
L0
Bye
L1
Bye
Bye
L2

forks.c

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)

11

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned child

will be reaped by init process (pid == 1)

11

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned child

will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

11

Carnegie Mellon

wait: Synchronizing with Children

12

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
} forks.c

Carnegie Mellon

wait: Synchronizing with Children

12

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Carnegie Mellon

wait: Synchronizing with Children

12

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Carnegie Mellon

wait: Synchronizing with Children

12

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

•int wait(int *child_status)
• Suspends current process until one of its children terminates
• Return value is the pid of the child process that terminated

• If child_status != NULL, then the integer it points to will be set to
a value that indicates reason the child terminated and the exit status:

• Checked using macros defined in wait.h
• WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

• See textbook for details

13

Carnegie Mellon

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status

14

void fork10() {
 int i, child_status;

 for (i = 0; i < N; i++)
 if (fork() == 0) {
 exit(100+i); /* Child */
 }
 for (i = 0; i < N; i++) { /* Parent */
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
}

forks.c

Carnegie Mellon

waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options)

• Suspends current process until specific process terminates
• Various options (see textbook)

15

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminate abnormally\n", wpid);
 }
} forks.c

Carnegie Mellon

16

 char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};
 char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

execve: Loading and Running Programs

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

17

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

17

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

17

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:

• Executable file filename
• Argument list argv

• By convention argv[0]==filename
• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

17

Carnegie Mellon

execve Example

18

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

(argc == 3)

Carnegie Mellon

Summary
• Processes

• At any given time, system has multiple active processes
• Only one can execute at a time on a single core, though
• Each process appears to have total control of processor + private memory space

• Spawning processes

• Call fork
• One call, two returns

• Process completion

• Call exit
• One call, no return

• Reaping and waiting for processes

• Call wait or waitpid

• Loading and running programs

• Call execve (or variant)
• One call, (normally) no return

19

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

20

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

21

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel
• Could be requested by another process, by user, or automatically by

the kernel
• Signal type is identified by small integer ID’s (1-30)

21

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

22

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

22

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)

23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process

23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

23

(2) Control passes
to signal handler

(3) Signal
handler runs

(4) Signal handler
returns to
next instruction

IcurrInext

(1) Signal received
by process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which terminates the
process

24

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818

Send SIGKILL to process 24818
• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which terminates the
process

24

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

25

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

25

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrp()
Return process group of current process

setpgid()
Change process group of a process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817

Send SIGKILL to every process in
process group 24817

26

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817

Send SIGKILL to every process in
process group 24817

26

linux> ./forks 16
Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> /bin/kill -9 -24817
linux> ps
 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

Carnegie Mellon

Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every

process in the foreground process group.

• SIGINT – default action is to terminate each process

• Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

27

Carnegie Mellon

Example of ctrl-c and ctrl-z

28

bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107

<types ctrl-z>
Suspended
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w
 PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

Carnegie Mellon

Sending Signals with kill Function

29

void fork12()
{
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0) {
 /* Child: Infinite Loop */
 while(1)
 ;
 }

 for (i = 0; i < N; i++) {
 printf("Killing process %d\n", pid[i]);
 kill(pid[i], SIGINT);
 }

 for (i = 0; i < N; i++) {
 pid_t wpid = wait(&child_status);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",
 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

forks.c

Carnegie Mellon

Default Actions to Signals

• Each signal type has a predefined default action, which is
one of:

• The process terminates
• The process stops until restarted by a SIGCONT signal
• The process ignores the signal

30

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal

31

Carnegie Mellon

Signal Handling Example

32

void sigint_handler(int sig) /* SIGINT handler */
{
 printf("So you think you can stop the bomb with ctrl-c, do you?\n");
 sleep(2);
 printf("Well...");
 fflush(stdout);
 sleep(1);
 printf("OK. :-)\n");
 exit(0);
}

int main()
{
 /* Install the SIGINT handler */
 if (signal(SIGINT, sigint_handler) == SIG_ERR)
 unix_error("signal error");

 /* Wait for the receipt of a signal */
 pause();

 return 0;
} sigint.c

Carnegie Mellon

Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process)
that runs concurrently with the main program

33

Process A

while (1)
 ;

Process A

handler(){
 …
}

Process B

Time

Carnegie Mellon

Nested Signal Handlers
• Handlers can be interrupted by other handlers

34

(2) Control passes
to handler S

 Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

 Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main program

(7) Main program
resumes

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

35

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

36

Signal delivered
to process A

Signal received
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

37

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals

37

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals
• Blocked signals can be delivered, i.e., in the pending state, but will not

be received/responded to until the signal is unblocked

37

Carnegie Mellon

Pending/Blocked Bits

• Kernel maintains pending and masked bit vectors in the
context of each process

• pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is delivered
• Kernel clears bit k in pending when a signal of type k is received

• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function
• Also referred to as the signal mask.

38

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)
• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
• Pass control to next instruction in logical flow for p

39

Carnegie Mellon

Blocking Signals

40

 sigset_t mask, prev_mask;

 sigemptyset(&mask);
 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */
 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */
 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function
• sigemptyset – Create empty set
• sigfillset – Add every signal number to set
• sigaddset – Add signal number to set
• sigdelset – Delete signal number from set

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

41

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid, y = 0;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

• When return to parent
process, y == 20!

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the

main program and the signal handler, that is:
• when a signal happens/delivers (depends on user or other process)
• when the signal handler will be executed (depends on kernel)

• If not careful, shared data structures can be corrupted

42

Carnegie Mellon

Fixing the Signal Handling Bug

43

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);
}

• Block all signals before
accessing a shared,
global data structure.

• Can’t use a lock (later
in this course)

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit

44

Carnegie Mellon

Async-Signal-Safety

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf, sprintf, malloc, exit
• Unfortunate fact: write is the only async-signal-safe output

function

44

Carnegie Mellon

Another Unsafe Signal Handler Example

45

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue

45

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes
• When each child process is created, add the child PID to a

queue
• When a child process terminates, the parent process

removes the child PID from the queue
• One possible implementation:

• An array for keeping the child PIDs
• Use a loop to fork child, and add PID to the array after fork
• Install a handler for SIGCHLD in parent process
• The SIGCHLD handler removes the child PID

45

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:
• The first child runs, and

terminates

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

• The handler deletes the job,
which isn’t in the queue yet!

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

46

The following can happen:
• The first child runs, and

terminates
• Kernel sends SIGCHLD
• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

• The handler deletes the job,
which isn’t in the queue yet!

• The parent process resumes
and adds a terminated child
to job list

Carnegie Mellon

First Attempt
void handler(int sig)
{
 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */
 /* Delete the child from the job list */
 deletejob(pid);
 }
}

int main(int argc, char **argv)
{
 int pid;

 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }
 /* Add the child to the job list */
 addjob(pid);
 }
 exit(0);
}

47

Key in this example: creating a
child and adding its PID to the
job list must be an atomic unit:
either both happen or neither
happen; there can’t be
anything else that separates
the two.

Carnegie Mellon

Second Attempt
void handler(int sig)
{
 sigset_t mask_all, prev_all;
 pid_t pid;

 sigfillset(&mask_all);
 while ((pid = wait(NULL)) > 0) {
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 deletejob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
}
int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;

 sigfillset(&mask_all);
 signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 if ((pid = Fork()) == 0) {
 Execve("/bin/date", argv, NULL);
 }
 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 addjob(pid);
 sigprocmask(SIG_SETMASK, &prev_all, NULL);
 }
 exit(0);
}

48

Carnegie Mellon

Third Attempt (The Correct One)

49

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);
 Sigemptyset(&mask_one);
 Sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Carnegie Mellon

Third Attempt (The Correct One)

49

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);
 Sigemptyset(&mask_one);
 Sigaddset(&mask_one, SIGCHLD);
 Signal(SIGCHLD, handler);
 initjobs(); /* Initialize the job list */

 while (1) {
 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */
 if ((pid = Fork()) == 0) { /* Child process */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 Execve("/bin/date", argv, NULL);
 }
 addjob(pid); /* Add the child to the job list */
 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */
 }
 exit(0);
}

Why this?

Thinking in Parallel is Hard

50

Thinking in Parallel is Hard

50

Maybe Thinking is Hard

