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Announcements

2

•Cache problem set: https://www.cs.rochester.edu/courses/252/
spring2023/handouts.html Won’t be graded. 

•Mid-term solution posted: https://www.cs.rochester.edu/
courses/252/spring2023/handouts.html

Today

Lab 4 Due

https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
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Announcements
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•Two videos from last year: 
• https://rochester.hosted.panopto.com/Panopto/Pages/

Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1 
• https://rochester.hosted.panopto.com/Panopto/Pages/

Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76

https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=5cc587bf-960a-4346-8044-ae62012716a1
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76
https://rochester.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=9539300d-cc1a-40a6-a772-ae6701269b76
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Today
• Process Control

• Signals: The Way to Communicate with Processes

4
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Creating Processes
• Parent process creates a new child process by calling fork 
• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

•int fork(void) 

• Returns 0 to the child process 
• Returns child’s PID to the parent process

5
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Process Graph Example

6

int main() 
{ 
    pid_t pid; 
    int x = 1; 

    pid = Fork();  
    if (pid == 0) {  /* Child */ 
        printf("child : x=%d\n", ++x);  
 exit(0); 
    } 

    /* Parent */ 
    printf("parent: x=%d\n", --x);  
    exit(0); 
}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:

7

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:
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fork Example: Two consecutive forks

8

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} forks.c
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fork Example: Two consecutive forks

8

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

forks.c
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fork Example: Two consecutive forks

8

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output: 
L0 
L1 
Bye 
Bye 
L1 
Bye 
Bye

forks.c
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fork Example: Two consecutive forks

8

void fork2() 
{ 
    printf("L0\n"); 
    fork(); 
    printf("L1\n"); 
    fork(); 
    printf("Bye\n"); 
} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output: 
L0 
L1 
Bye 
Bye 
L1 
Bye 
Bye

Infeasible output: 
L0 
Bye 
L1 
Bye 
L1 
Bye 
Bye

forks.c
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fork Example: Nested forks in parent
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void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
} forks.c
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fork Example: Nested forks in parent

9

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

forks.c
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fork Example: Nested forks in parent

9

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output: 
L0 
L1 
Bye 
Bye 
L2 
Bye

forks.c
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fork Example: Nested forks in parent

9

void fork4() 
{ 
    printf("L0\n"); 
    if (fork() != 0) { 
       printf("L1\n"); 
       if (fork() != 0) { 
           printf("L2\n"); 
 } 
    } 
    printf("Bye\n"); 
}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output: 
L0 
L1 
Bye 
Bye 
L2 
Bye

Infeasible output: 
L0 
Bye 
L1 
Bye 
Bye 
L2

forks.c
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fork Example: Nested forks in children
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void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
} forks.c
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fork Example: Nested forks in children

10

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

forks.c
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fork Example: Nested forks in children

10

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output: 
L0 
Bye 
L1 
L2 
Bye 
Bye

forks.c
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fork Example: Nested forks in children

10

void fork5() 
{ 
    printf("L0\n"); 
    if (fork() == 0) { 
        printf("L1\n"); 
        if (fork() == 0) { 
            printf("L2\n"); 
        } 
    } 
    printf("Bye\n"); 
}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output: 
L0 
Bye 
L1 
L2 
Bye 
Bye

Infeasible output: 
L0 
Bye 
L1 
Bye 
Bye 
L2

forks.c



Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)

11
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Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned child 

will be reaped by init process (pid == 1)

11
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Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables
• Called a “zombie”: Living corpse, half alive and half dead

• Reaping
• Performed by parent on terminated child (using wait or waitpid)
• Parent is given exit status information
• Kernel then deletes zombie child process

• What if parent doesn’t reap?
• If any parent terminates without reaping a child, then the orphaned child 

will be reaped by init process (pid == 1)
• So, only need explicit reaping in long-running processes

• e.g., shells and servers

11
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wait: Synchronizing with Children

12

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
} forks.c
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wait: Synchronizing with Children

12

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c
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wait: Synchronizing with Children

12

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c

Feasible output: 
HC 
HP 
CT 
Bye
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wait: Synchronizing with Children

12

void fork9() { 
    int child_status; 

    if (fork() == 0) { 
        printf("HC: hello from child\n"); 
 exit(0); 
    } else { 
        printf("HP: hello from parent\n"); 
        wait(&child_status); 
        printf("CT: child has terminated\n"); 
    } 
    printf("Bye\n"); 
}

printf wait printffork

printf
exit

HP

HC

CT 
Bye

forks.c

Feasible output: 
HC 
HP 
CT 
Bye

Infeasible output: 
HP 
CT 
Bye 
HC
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wait: Synchronizing with Children

• Parent reaps a child by calling the wait function


•int wait(int *child_status) 
• Suspends current process until one of its children terminates 
• Return value is the pid of the child process that terminated 

• If child_status != NULL, then the integer it points to will be set to  
a value that indicates reason the child terminated and the exit status: 

• Checked using macros defined in wait.h 
• WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED 

• See textbook for details

13



Carnegie Mellon

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information 

about exit status

14

void fork10() { 
   int i, child_status; 

    for (i = 0; i < N; i++) 
        if (fork() == 0) { 
            exit(100+i); /* Child */ 
        } 
    for (i = 0; i < N; i++) { /* Parent */ 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
}

forks.c
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waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options) 

• Suspends current process until specific process terminates 
• Various options (see textbook)

15

void fork11() { 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) 
            exit(100+i); /* Child */ 
    for (i = N-1; i >= 0; i--) { 
        pid_t wpid = waitpid(pid[i], &child_status, 0); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminate abnormally\n", wpid); 
    } 
} forks.c
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16

  char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”}; 
  char *environ[] = {“USER=droh”, “PWD=“/usr/droh”}; 
   
  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

execve: Loading and Running Programs
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

17
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename 
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

17
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename 
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

17
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])
• Loads and runs in the current process:


• Executable  file filename 
• Argument list argv 

• By convention argv[0]==filename 
• Environment variable list envp 

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

17
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execve Example

18

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

  if ((pid = Fork()) == 0) {   /* Child runs program */                                                
      if (execve(myargv[0], myargv, environ) < 0) {                                                         
          printf("%s: Command not found.\n", myargv[0]);                                                  
          exit(1);                                                                                      
      }                                                                                                 
  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

(argc == 3)
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Summary
• Processes


• At any given time, system has multiple active processes 
• Only one can execute at a time on a single core, though 
• Each process appears to have total control of  processor + private memory space 

• Spawning processes

• Call fork 
• One call, two returns 

• Process completion

• Call exit 
• One call, no return 

• Reaping and waiting for processes

• Call wait or waitpid 

• Loading and running programs

• Call execve (or variant) 
• One call, (normally) no return

19
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Today
• Process Control

• Signals: The Way to Communicate with Processes

20
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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)

21
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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel 
• Could be requested by another process, by user, or automatically by 

the kernel 
• Signal type is identified by small integer ID’s (1-30)

21

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:

22



Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

22
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

22
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
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updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.

22
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process

• Kernel sends a signal for one of the following reasons:
• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)
• Interrupt: user pressing Ctrl + C (SIGINT)
• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.
• Note: kill doesn’t mean you are going to kill the target process. It is just a 

system call that allows you to send signals. Of course the signal you send 
could be SIGKILL.

22
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Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

23
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Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)

23
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• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal
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• Ignore the signal (do nothing)
• Terminate the process

23



Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

23
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Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:
• Ignore the signal (do nothing)
• Terminate the process
• Catch the signal by executing a user-level function called signal handler

23

(2) Control passes  
to signal handler 

(3) Signal  
handler runs

(4) Signal handler 
returns to  
next instruction

IcurrInext

(1) Signal received 
by process 
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Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process 

• Examples

• /bin/kill –9 24818 

Send SIGKILL to process 24818 
• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which terminates the 
process

24

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps 
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Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process 

• Examples

• /bin/kill –9 24818 

Send SIGKILL to process 24818 
• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which terminates the 
process

24

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
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Process Groups

• Every process belongs to exactly one process group

25

Fore- 
ground 

job

Back- 
ground 
job #1

Back- 
ground 
job #2

Shell

Child Child

pid=10 
pgid=10

Foreground  
process group 20

Background 
process group 32

Background 
process group 40

pid=20 
pgid=20

pid=32 
pgid=32

pid=40 
pgid=40

pid=21 
pgid=20

pid=22 
pgid=20
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Process Groups

• Every process belongs to exactly one process group

25

Fore- 
ground 

job

Back- 
ground 
job #1

Back- 
ground 
job #2

Shell

Child Child

pid=10 
pgid=10

Foreground  
process group 20

Background 
process group 32

Background 
process group 40

pid=20 
pgid=20

pid=32 
pgid=32

pid=40 
pgid=40

pid=21 
pgid=20

pid=22 
pgid=20

getpgrp() 
Return process group of current process 

setpgid() 
Change process group of a process
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Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817 

Send SIGKILL to every process in 
process group 24817

26

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps  
linux> /bin/kill -9 -24817  
linux> ps   
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24823 pts/2    00:00:00 ps  
linux> 
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Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817 

Send SIGKILL to every process in 
process group 24817

26

linux> ./forks 16  
Child1: pid=24818 pgrp=24817  
Child2: pid=24819 pgrp=24817  
  
linux> ps  
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24818 pts/2    00:00:02 forks  
24819 pts/2    00:00:02 forks  
24820 pts/2    00:00:00 ps  
linux> /bin/kill -9 -24817  
linux> ps   
  PID TTY          TIME CMD  
24788 pts/2    00:00:00 tcsh  
24823 pts/2    00:00:00 ps  
linux> 
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Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every 

process in the foreground process group.

• SIGINT – default action is to terminate each process  

• Typing ctrl-z causes the kernel to send a SIGTSTP to 
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

27
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Example of ctrl-c and ctrl-z

28

bluefish> ./forks 17 
Child: pid=28108 pgrp=28107 
Parent: pid=28107 pgrp=28107 

<types ctrl-z> 
Suspended 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28107 pts/8    T      0:01 ./forks 17 
28108 pts/8    T      0:01 ./forks 17 
28109 pts/8    R+     0:00 ps w 

bluefish> fg 
./forks 17 
<types ctrl-c> 
bluefish> ps w 
  PID TTY      STAT   TIME COMMAND 
27699 pts/8    Ss     0:00 -tcsh 
28110 pts/8    R+     0:00 ps w 

STAT (process state) Legend: 

First letter: 
S: sleeping 
T: stopped 
R: running 

Second letter: 
s: session leader 
+: foreground proc group 

See “man ps” for more  
details
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Sending Signals with kill Function

29

void fork12() 
{ 
    pid_t pid[N]; 
    int i; 
    int child_status; 

    for (i = 0; i < N; i++) 
        if ((pid[i] = fork()) == 0) { 
            /* Child: Infinite Loop */ 
            while(1) 
                ; 
        } 
     
    for (i = 0; i < N; i++) { 
        printf("Killing process %d\n", pid[i]); 
        kill(pid[i], SIGINT); 
    } 

    for (i = 0; i < N; i++) { 
        pid_t wpid = wait(&child_status); 
        if (WIFEXITED(child_status)) 
            printf("Child %d terminated with exit status %d\n", 
                   wpid, WEXITSTATUS(child_status)); 
        else 
            printf("Child %d terminated abnormally\n", wpid); 
    } 
}

forks.c
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Default Actions to Signals

• Each signal type has a predefined default action, which is 
one of:

• The process terminates 
• The process stops until restarted by a SIGCONT signal 
• The process ignores the signal

30
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Installing Signal Handlers

• The signal function modifies the default action associated 
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)
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Installing Signal Handlers

• The signal function modifies the default action associated 
with the receipt of signal signum:
• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:
• SIG_IGN: ignore signals of type signum
• SIG_DFL: revert to the default action on receipt of signals of type signum
• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum
• Referred to as “installing” the handler
• Executing handler is called “catching” or “handling” the signal
• When the handler executes its return statement, control passes 

back to instruction in the control flow of the process that was 
interrupted by receipt of the signal

31
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Signal Handling Example

32

void sigint_handler(int sig) /* SIGINT handler */ 
{ 
    printf("So you think you can stop the bomb with ctrl-c, do you?\n"); 
    sleep(2); 
    printf("Well..."); 
    fflush(stdout); 
    sleep(1); 
    printf("OK. :-)\n"); 
    exit(0); 
} 

int main() 
{ 
    /* Install the SIGINT handler */ 
    if (signal(SIGINT, sigint_handler) == SIG_ERR) 
        unix_error("signal error"); 

    /* Wait for the receipt of a signal */ 
    pause(); 

    return 0; 
} sigint.c
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Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process) 
that runs concurrently with the main program

33

Process A  

while (1) 
    ;

Process A 

handler(){ 
    … 
}

Process B

Time
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Nested Signal Handlers 
• Handlers can be interrupted by other handlers

34

(2) Control passes 
to handler S

 Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

 Handler S  Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 
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Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)

35

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)

36

Signal delivered 
to process A

Signal received 
by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once
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Pending and Blocked Signals

• A signal is pending if sent but not yet received
• There can be at most one pending signal of any particular type for a 

process
• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals
• Blocked signals can be delivered, i.e., in the pending state, but will not 

be received/responded to until the signal is unblocked

37
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Pending/Blocked Bits 

• Kernel maintains pending and masked bit vectors in the 
context of each process

• pending: represents the set of pending signals


• Kernel sets bit k in pending when a signal of type k is delivered 
• Kernel clears bit k in pending when a signal of type k is received  

• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function 
• Also referred to as the signal mask.

38
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Receiving Signals

• Right before kernel is ready to pass control to process p

39



Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)

39



Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)
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Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)
• If  (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the 
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive 

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
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Receiving Signals

• Right before kernel is ready to pass control to process p
• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)
• If  (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the 
logical flow for p

• Else
• Choose least nonzero bit k in pnm and force process p to receive 

signal k, i.e., by executing the corresponding signal handler
• Repeat for all nonzero k in pnm
• Pass control to next instruction in logical flow for p

39
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Blocking Signals

40

    sigset_t mask, prev_mask; 

    sigemptyset(&mask); 
    sigaddset(&mask, SIGINT); 

    /* Block SIGINT and save previous blocked set */ 
    sigprocmask(SIG_BLOCK, &mask, &prev_mask); 

    /* Code region that will not be interrupted by SIGINT */ 

    /* Restore previous blocked set, unblocking SIGINT */ 
    sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function 
• sigemptyset – Create empty set 
• sigfillset – Add every signal number to set 
• sigaddset – Add signal number to set 
• sigdelset – Delete signal number from set
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

41
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid, y = 0; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• Context switch to child, 

which then terminates, sends 
a SIGCHLD signal

• Another context switch back 
to parent, and now the kernel 
needs to execute the 
SIGCHLD handler

• When return to parent 
process, y == 20!



Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the 

main program and the signal handler, that is: 
• when a signal happens/delivers (depends on user or other process) 
• when the signal handler will be executed (depends on kernel) 

• If not careful, shared data structures can be corrupted

42
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Fixing the Signal Handling Bug

43

static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.


• Can’t use a lock (later 
in this course)
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Async-Signal-Safety 

• Function is async-signal-safe if it either has no access to 
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.
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Async-Signal-Safety 

• Function is async-signal-safe if it either has no access to 
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe 
• Source: “man 7 signal”
• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill
• Popular functions that are not on the list:

• printf,  sprintf, malloc, exit 
• Unfortunate fact: write is the only async-signal-safe output 

function
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Another Unsafe Signal Handler Example
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes 
• When each child process is created, add the child PID to a 

queue 
• When a child process terminates, the parent process 

removes the child PID from the queue
• One possible implementation:


• An array for keeping the child PIDs 
• Use a loop to fork child, and add PID to the array after fork 
• Install a handler for SIGCHLD in parent process 
• The SIGCHLD handler removes the child PID

45
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}
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• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed
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The following can happen:
• The first child runs, and 

terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed

• The handler deletes the job, 
which isn’t in the queue yet!
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}
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The following can happen:
• The first child runs, and 

terminates
• Kernel sends SIGCHLD
• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed

• The handler deletes the job, 
which isn’t in the queue yet!

• The parent process resumes 
and adds a terminated child 
to job list
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First Attempt
void handler(int sig) 
{ 
    pid_t pid; 

    while ((pid = wait(NULL)) > 0) { /* Reap child */ 
        /* Delete the child from the job list */ 
        deletejob(pid); 
    } 
} 

int main(int argc, char **argv) 
{ 
    int pid; 

    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { /* Child */ 
            Execve("/bin/date", argv, NULL); 
        } 
        /* Add the child to the job list */ 
        addjob(pid); 
    } 
    exit(0); 
}
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Key in this example: creating a 
child and adding its PID to the 
job list must be an atomic unit: 
either both happen or neither 
happen; there can’t be 
anything else that separates 
the two.
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Second Attempt
void handler(int sig) 
{ 
    sigset_t mask_all, prev_all; 
    pid_t pid; 

    sigfillset(&mask_all); 
    while ((pid = wait(NULL)) > 0) { 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        deletejob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
} 
int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 

    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        if ((pid = Fork()) == 0) { 
            Execve("/bin/date", argv, NULL); 
        } 
        sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
        addjob(pid); 
        sigprocmask(SIG_SETMASK, &prev_all, NULL); 
    } 
    exit(0); 
}
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Third Attempt (The Correct One)

49

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, mask_one, prev_one; 

    Sigfillset(&mask_all); 
    Sigemptyset(&mask_one); 
    Sigaddset(&mask_one, SIGCHLD); 
    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ 
        if ((pid = Fork()) == 0) { /* Child process */ 
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */ 
            Execve("/bin/date", argv, NULL); 
        } 
 addjob(pid);  /* Add the child to the job list */ 
        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */ 
    } 
    exit(0); 
}
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Third Attempt (The Correct One)
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int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, mask_one, prev_one; 

    Sigfillset(&mask_all); 
    Sigemptyset(&mask_one); 
    Sigaddset(&mask_one, SIGCHLD); 
    Signal(SIGCHLD, handler); 
    initjobs(); /* Initialize the job list */ 

    while (1) { 
        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */ 
        if ((pid = Fork()) == 0) { /* Child process */ 
            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */ 
            Execve("/bin/date", argv, NULL); 
        } 
 addjob(pid);  /* Add the child to the job list */ 
        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */ 
    } 
    exit(0); 
}

Why this?
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Maybe Thinking is Hard


