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malloc Example

!2

#include <stdio.h> 
#include <stdlib.h> 

void foo(int n) { 
    int i, *p; 

    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 

    /* Initialize allocated block */ 
    for (i=0; i<n; i++) 
 p[i] = i; 

    /* Return allocated block to the heap */ 
    free(p); 
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 8 bytes
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!
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int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}
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Dynamic Memory Allocation
• Allocator maintains heap as collection of variable sized blocks/

chunks, which are either allocated or free
• Blocks that are no longer used should be free-ed to save space

!5

Allocated block 
(4 words)

Free block 
(3 words) Free word

Allocated word

• Assumptions Made in This Lecture

• Memory is word addressed 
• Words are int-sized
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Dynamic Memory Allocation
• Types of allocators


• Explicit allocator:  application (i.e., programmer) allocates and frees 
space 

• E.g.,  malloc and free in C
• Implicit allocator: application allocates, but does not free space

• E.g. garbage collection in Java, JavaScript, Python, etc…

•Will discuss simple explicit memory allocation today

!6
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Allocation Example
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p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d  block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed; more on this later. Why?

!8
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External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

!9
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p2 = malloc(5)
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free(p2)



Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

!9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)



Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no 

single free block is large enough

• Depends on the pattern of future requests

!9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)
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Key Issues in Dynamic Memory Allocation
• Free:


• How do we know how much memory to free given just a pointer? 
• How do we keep track of the free blocks? 
• How do we reinsert freed block? 

• Allocation:

• What do we do with the extra space when allocating a structure 

that is smaller than the free block it is placed in? 
• How do we pick a block to use for allocation -- many might fit?

!10
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Knowing How Much to Free
• Standard method


• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

!11

p0 = malloc(4)

p0

free(p0)

block size payload

5
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Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is 
smaller than block size

!12

Payload Internal  
fragmentation

Block

Internal  
fragmentation
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Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is 
smaller than block size

• Caused by 

• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (e.g., to return a big block to satisfy a small 

request)

!12

Payload Internal  
fragmentation

Block

Internal  
fragmentation
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Keeping Track of Free Blocks
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Keeping Track of Free Blocks

!13

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes
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Today  
•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists

!14
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Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!
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Size

1 word

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
(allocated blocks only) 

a

Optional
padding

5 4 26
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Size

1 word

Format of 
allocated and 
free blocks

Payload

a = 1: Allocated block   
a = 0: Free block 

Size: block size 

Payload: application data 
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a

Optional
padding
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Detailed Implicit Free List Example

!17

Start  
of  

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded 
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
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Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list
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Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished 
• Should often be faster than first fit: avoids re-scanning unhelpful blocks 
• Some research suggests that fragmentation is worse

• Best fit:

• Search the list, choose the best free block: fits, with fewest bytes left over 
• Keeps fragments small—usually improves memory utilization 
• Will typically run slower than first fit

!18
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Allocating in Free Block
• Allocated space might be smaller than free space

• We could simply leave the extra space there. Simple to implement but 

causes internal fragmentation

• Or we could split the block

!19

void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block

4 4 26

4 24

p

24
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Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!20
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Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!20

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it 
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Coalescing
• Join (coalesce) with next/previous blocks, if they are free


• Coalescing with next block

!21

void free_block(ptr p) {  
    *p = *p & -2;          // clear allocated flag  
    next = p + *p;         // find next block  
    if ((*next & 1) == 0)  
      *p = *p + *next;     // add to this block if  
}                          //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically 
gone
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Coalescing
• How about now?
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Coalescing
• How about now?

• How do we coalesce with previous block?
• Linear time solution: scans from beginning

!22

4 24 2

free(p) p

4

4 24 28
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Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!23
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Size

Format of 
allocated and 
free blocks

Payload and 
padding

a = 1: Allocated block   
a = 0: Free block 

Size: Total block size 

Payload: Application data 
(allocated blocks only) 

a

SizeBoundary tag 
(footer)

4 4 4 4 6 46 4
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Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

• Disadvantages? (Think of small blocks…)

!23
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Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	
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Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks? 
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

• Immediate coalescing: coalesce each time free is called  
• Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. Examples: 
• Coalesce as you scan the free list for malloc 
• Coalesce when the amount of external fragmentation reaches 

some threshold

!24
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• Implementation: very simple
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Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

•Memory usage: 

• Will depend on placement policy 
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing 
are general to all allocators

!25
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Keeping Track of Free Blocks

!26

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• These pointers exist only in free blocks, occupying the would-be 

payload area, so not really an overhead.
• Still need boundary tags for coalescing.

!27

Size

Payload and 
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block
(same as before) Free block
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Explicit Free Lists
• Logically:


• Physically: blocks can be in any order

!28

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

!29

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed 

block?
• LIFO (last-in-first-out) policy


• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address 

order:  
         addr(prev) < addr(curr) < addr(next)

•  Con: requires search
•  Pro: studies suggest fragmentation is lower than LIFO
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Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list
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Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list
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free( )
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Root
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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free( )
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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free( )
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list
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free( )
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Root

After
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Explicit List Summary
• Comparison to implicit list:


• Allocate is linear time in number of free blocks instead of all blocks. 
Much faster when most of the memory is full. 

• Slightly more complicated allocate and free since needs to splice 
blocks in and out of the list 

• Some extra space for the links in free blocks (2 extra words needed 
for each block).
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Keeping Track of Free Blocks

!36

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist


• Often have separate classes for each small size 
• For larger sizes: One class for each two-power size (why?)
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Seglist Allocator
• Given an array of free lists, each one for some size class
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Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found
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Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.
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Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list 
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Advantages of Seglist allocators
• Higher throughput


• Constant time allocation and free for requests that have a dedicated 
free list (most of the cases) 

• log time for power-of-two size classes (searching the lists) 
• Better memory utilization


• First-fit search of segregated free list approximates a best-fit search 
of entire heap. 

• Extreme case: Giving each block its own size class is equivalent to 
best-fit.
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