
CSC 252: Computer Organization 
 Spring 2023: Lecture 23 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

malloc Example

!2

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return allocated block to the heap */
 free(p);
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 8 bytes

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!3

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!4

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!4

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!4

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!4

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p

Carnegie Mellon

Dynamic Memory Allocation
• Allocator maintains heap as collection of variable sized blocks/

chunks, which are either allocated or free
• Blocks that are no longer used should be free-ed to save space

!5

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

• Assumptions Made in This Lecture

• Memory is word addressed
• Words are int-sized

Carnegie Mellon

Dynamic Memory Allocation
• Types of allocators

• Explicit allocator: application (i.e., programmer) allocates and frees
space

• E.g., malloc and free in C
• Implicit allocator: application allocates, but does not free space

• E.g. garbage collection in Java, JavaScript, Python, etc…

•Will discuss simple explicit memory allocation today

!6

Carnegie Mellon

Allocation Example

!7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Allocation Example

!7

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

Carnegie Mellon

Constraints
• Applications

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

!8

Carnegie Mellon

Constraints
• Applications

• Can issue arbitrary sequence of malloc and free requests
• free request must be to a malloc’d block

• Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc requests

• i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

• i.e., can place allocated blocks only in free memory
• Must align blocks so they satisfy all alignment requirements

• 8-byte (x86) or 16-byte (x86-64) alignment on Linux boxes
• Can manipulate and modify only free memory
• Can’t move the allocated blocks once they are malloc’d

• i.e., compaction is not allowed; more on this later. Why?

!8

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

!9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

!9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

External Fragmentation
• Occurs when there is enough aggregate heap memory, but no

single free block is large enough

• Depends on the pattern of future requests

!9

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) Oops! (what would happen now?)

Carnegie Mellon

Key Issues in Dynamic Memory Allocation
• Free:

• How do we know how much memory to free given just a pointer?
• How do we keep track of the free blocks?
• How do we reinsert freed block?

• Allocation:

• What do we do with the extra space when allocating a structure

that is smaller than the free block it is placed in?
• How do we pick a block to use for allocation -- many might fit?

!10

Carnegie Mellon

Knowing How Much to Free
• Standard method

• Keep the length of a block in the word preceding the block.
• This word is often called the header field or header

• Requires an extra word for every allocated block

!11

p0 = malloc(4)

p0

free(p0)

block size payload

5

Carnegie Mellon

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is
smaller than block size

!12

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

Internal Fragmentation

• For a given block, internal fragmentation occurs if payload is
smaller than block size

• Caused by

• Overhead of maintaining heap data structures
• Padding for alignment purposes
• Explicit policy decisions (e.g., to return a big block to satisfy a small

request)

!12

Payload Internal
fragmentation

Block

Internal
fragmentation

Carnegie Mellon

Keeping Track of Free Blocks

!13

5 4 26

•Method 1: Implicit list using length—links all blocks

Carnegie Mellon

Keeping Track of Free Blocks

!13

5 4 26

•Method 1: Implicit list using length—links all blocks

Carnegie Mellon

Keeping Track of Free Blocks

!13

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

Carnegie Mellon

Keeping Track of Free Blocks

!13

5 4 26

5 4 26

•Method 1: Implicit list using length—links all blocks

•Method 2: Explicit list among the free blocks using pointers

•Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Today
•Memory mapping

• Dynamic memory allocation

• Basic concepts
• Implicit free lists

!14

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!15

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

!15

Size

1 word

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

5 4 26

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!16

Carnegie Mellon

Implicit List
• For each block we need both size and allocation status

• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit

!16

Size

1 word

Format of
allocated and
free blocks

Payload

a = 1: Allocated block
a = 0: Free block

Size: block size

Payload: application data
(allocated blocks only)

a

Optional
padding

Carnegie Mellon

Detailed Implicit Free List Example

!17

Start
of

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

!18

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

!18

Carnegie Mellon

Finding a Free Block
• First fit:

• Search list from beginning, choose first free block that fits
• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished
• Should often be faster than first fit: avoids re-scanning unhelpful blocks
• Some research suggests that fragmentation is worse

• Best fit:

• Search the list, choose the best free block: fits, with fewest bytes left over
• Keeps fragments small—usually improves memory utilization
• Will typically run slower than first fit

!18

Carnegie Mellon

Allocating in Free Block
• Allocated space might be smaller than free space

• We could simply leave the extra space there. Simple to implement but

causes internal fragmentation

• Or we could split the block

!19

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // round up to even
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

4 4 26

4 24

p

24

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!20

4 24 24

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!20

4 24 24

free(p) p

4 4 24 2

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!20

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

Carnegie Mellon

Freeing a Block
• Simplest implementation:

• Need only clear the “allocated” flag
 void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation”

!20

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it

Carnegie Mellon

Coalescing
• Join (coalesce) with next/previous blocks, if they are free

• Coalescing with next block

!21

void free_block(ptr p) {  
 *p = *p & -2; // clear allocated flag  
 next = p + *p; // find next block  
 if ((*next & 1) == 0)  
 *p = *p + *next; // add to this block if  
} // not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically
gone

Carnegie Mellon

Coalescing
• How about now?

!22

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?

!22

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Coalescing
• How about now?

• How do we coalesce with previous block?
• Linear time solution: scans from beginning

!22

4 24 2

free(p) p

4

4 24 28

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!23

4 4 4 4 6 46 4

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!23

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

SizeBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

!23

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]

• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

• Disadvantages? (Think of small blocks…)

!23

Size

Format of
allocated and
free blocks

Payload and
padding

a = 1: Allocated block
a = 0: Free block

Size: Total block size

Payload: Application data
(allocated blocks only)

a

Size aBoundary tag
(footer)

4 4 4 4 6 46 4

Header

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

!24

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks?
• How much internal fragmentation are we willing to tolerate?

!24

Carnegie Mellon

Summary of Key Allocator Policies
• Placement policy:

• First-fit, next-fit, best-fit, etc.
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks?
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

• Immediate coalescing: coalesce each time free is called
• Deferred coalescing: try to improve performance of free by deferring

coalescing until needed. Examples:
• Coalesce as you scan the free list for malloc
• Coalesce when the amount of external fragmentation reaches

some threshold

!24

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple

!25

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

!25

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

!25

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

!25

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

!25

Carnegie Mellon

Implicit Lists: Summary
• Implementation: very simple
• Allocate cost:

• linear time worst case
• Identify free blocks requires scanning all the blocks!

• Free cost:

• constant time worst case

•Memory usage:

• Will depend on placement policy
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing
are general to all allocators

!25

Carnegie Mellon

Keeping Track of Free Blocks

!26

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Explicit Free Lists

• Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• These pointers exist only in free blocks, occupying the would-be

payload area, so not really an overhead.
• Still need boundary tags for coalescing.

!27

Size

Payload and
padding

a

Size a

Size a

Size a

Next

Prev

Allocated block
(same as before) Free block

Carnegie Mellon

Explicit Free Lists
• Logically:

• Physically: blocks can be in any order

!28

A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C

Carnegie Mellon

Allocating From Explicit Free Lists

!29

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Carnegie Mellon

Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed

block?
• LIFO (last-in-first-out) policy

• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address

order:  
 addr(prev) < addr(curr) < addr(next)

• Con: requires search
• Pro: studies suggest fragmentation is lower than LIFO

!30

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!31

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!31

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!32

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and

insert the new block at the root of the list

!32

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!33

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks,

and insert the new block at the root of the list

!33

free()

Root

Root

Before

After

conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!34

free()

Root

Before conceptual graphic

Carnegie Mellon

Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3

memory blocks and insert the new block at the root of the list

!34

free()

Root

Before

Root

After

conceptual graphic

Carnegie Mellon

Explicit List Summary
• Comparison to implicit list:

• Allocate is linear time in number of free blocks instead of all blocks.
Much faster when most of the memory is full.

• Slightly more complicated allocate and free since needs to splice
blocks in and out of the list

• Some extra space for the links in free blocks (2 extra words needed
for each block).

!35

Carnegie Mellon

Keeping Track of Free Blocks

!36

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size (why?)

!37

1-2

3

4

5-8

9-inf

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class

!38

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

!38

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

!38

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list

!38

Carnegie Mellon

Advantages of Seglist allocators
• Higher throughput

• Constant time allocation and free for requests that have a dedicated
free list (most of the cases)

• log time for power-of-two size classes (searching the lists)
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search
of entire heap.

• Extreme case: Giving each block its own size class is equivalent to
best-fit.

!39

