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Announcements
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• Virtual Memory problem set: https://www.cs.rochester.edu/courses/252/
spring2023/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 5 due April 21.

Today

Due

Final

Last Class

https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
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Synchronizing Threads  
• Shared variables are handy...


•…but introduce the possibility of nasty synchronization errors.
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Improper Synchronization
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/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
        printf("BOOM! cnt=%ld\n", cnt); 
    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Improper Synchronization
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/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
        printf("BOOM! cnt=%ld\n", cnt); 
    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

linux> ./badcnt 
OK cnt=20000 

linux> ./badcnt 
BOOM! cnt=13051

cnt should be 20,000. 

What went wrong?
badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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Assembly Code for Counter Loop

!5

for (i = 0; i < niters; i++) 
    cnt++; 

C code for counter loop in thread i

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i
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Concurrent Execution
• Key observation: In general, any sequentially consistent 

interleaving is possible, but some give an unexpected result!
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L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri
cnt

(shared)
%rdx1

-
-
-
1
2
2

%rdx2

Thread 1 
critical section
Thread 2 
critical section

  movq  cnt(%rip),%rdx 
  addq  $1, %rdx 
  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Concurrent Execution (cont)
• A legal (feasible) but undesired ordering: two threads increment 

the counter, but the result is 1 instead of 2
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L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri %rdx1

-
-
0
-
1
1

%rdx2
cnt

(shared)

  movq  cnt(%rip),%rdx 
  addq  $1, %rdx 
  movq  %rdx, cnt(%rip)

Li
Ui
Si
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Assembly Code for Counter Loop
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for (i = 0; i < niters; i++) 
    cnt++; 

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i

critical 
section 
wrt cnt

C code for counter loop in thread i
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Critical Section
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• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

critical 
section 
wrt cnt
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Critical Section

!9

• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!
• Threads need to have mutually exclusive access to critical section. That 

is, the execution of the critical section must be atomic: instructions in a 
CS either are executed entirely without interruption or not executed at all.

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

critical 
section 
wrt cnt
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Enforcing Mutual Exclusion
•We must coordinate/synchronize the execution of the threads


• i.e., need to guarantee mutually exclusive access for each critical 
section.

• Classic solution: 

• Semaphores/mutex (Edsger Dijkstra)

• Other approaches

• Condition variables
• Monitors (Java)
• 254/258 discusses these

!10
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Using Semaphores for Mutual Exclusion
• Basic idea:
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.

!11
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value to 
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads are 
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value 

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.
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Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:
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  volatile long cnt = 0;  /* Counter */ 
  sem_t mutex;            /* Semaphore that protects cnt */ 
  
  Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  }

linux> ./goodcnt 10000 
OK cnt=20000 
linux> ./goodcnt 10000 
OK cnt=20000 
linux>

Warning: It’s orders of magnitude 
slower than badcnt.c. 

goodcnt.c
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?

!13

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  } goodcnt.c
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Problem? 
• Wouldn’t there be a problem when multiple threads access the 

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the 

mutex variable.
• Checking mutex value and setting its value must be an atomic 

unit: they either are performed entirely or not performed at all.
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 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  } goodcnt.c

function Lock(boolean *lock) { 
    while (test_and_set(lock) == 1); 
}
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Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for 

a condition that will never be true

• General to concurrent/parallel programming (threads, 

processes)

• Typical Scenario


• Processes 1 and 2 needs two resources (A and B) to proceed
• Process 1 acquires A, waits for B
• Process 2 acquires B, waits for A
• Both will wait forever!

!14
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Deadlocking With Semaphores
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void *count(void *vargp) 
{ 
    int i; 
    int id = (int) vargp; 
    for (i = 0; i < NITERS; i++) { 
 P(&mutex[id]); P(&mutex[1-id]); 
 cnt++; 
 V(&mutex[id]); V(&mutex[1-id]); 
    } 
    return NULL; 
} 

int main() 
{ 
    pthread_t tid[2]; 
    Sem_init(&mutex[0], 0, 1);  /* mutex[0] = 1 */ 
    Sem_init(&mutex[1], 0, 1);  /* mutex[1] = 1 */ 
    Pthread_create(&tid[0], NULL, count, (void*) 0); 
    Pthread_create(&tid[1], NULL, count, (void*) 1); 
    Pthread_join(tid[0], NULL); 
    Pthread_join(tid[1], NULL); 
    printf("cnt=%d\n", cnt); 
    exit(0); 
}

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1); 

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0); 
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Avoiding Deadlock

!16

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s0); 
P(s1); 
cnt++; 
V(s1); 
V(s0);

Acquire shared resources in same order

Tid[0]: 
P(s0); 
P(s1); 
cnt++; 
V(s0); 
V(s1);

Tid[1]: 
P(s1); 
P(s0); 
cnt++; 
V(s1); 
V(s0);
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.

!17
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 
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SIGCHLD interrupt and 
executes the handler
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Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may 
share the same global data structures.
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    Signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    exit(0); 
}

What if the following happens:
• Parent process executes and 

finishes if (x == 5)
• OS decides to take the 

SIGCHLD interrupt and 
executes the handler

• When return to parent 
process, y == 20!
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Fixing the Signal Handling Bug
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static int x = 5; 
void handler(int sig) 
{ 
    x = 10; 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    sigfillset(&mask_all); 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    Sigprocmask(SIG_SETMASK, &prev_all, NULL); 

    exit(0); 
}

• Block all signals before 
accessing a shared, 
global data structure.
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How About Using a Mutex?

!19

static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    V(&mutex); 

    exit(0); 
}
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How About Using a Mutex?
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Carnegie Mellon

How About Using a Mutex?
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static int x = 5; 
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    } 
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• This implementation 
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program.
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How About Using a Mutex?
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static int x = 5; 
void handler(int sig) 
{ 
    P(&mutex); 
    x = 10; 
    V(&mutex); 
} 

int main(int argc, char **argv) 
{ 
    int pid; 
    sigset_t mask_all, prev_all; 
    signal(SIGCHLD, handler); 

    if ((pid = Fork()) == 0) { /* Child */ 
        Execve("/bin/date", argv, NULL); 
    } 

    P(&mutex); 
    if (x == 5) 
        y = x * 2; // You’d expect y == 10 
    V(&mutex); 

    exit(0); 
}

• This implementation 
will get into a deadlock.

• Signal handler wants 
the mutex, which is 
acquired by the main 
program.

• Key: signal handler is in 
the same process/
thread as the main 
program. The kernel 
forces the handler to 
finish before returning 
to the main program.
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Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 254/258 to know more about avoiding deadlocks 

(and parallel programming in general)

!20
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 1, …, n-1 into t ranges,⎣n/t⎦ values each range 

• Each of t threads processes one range (sub-task) 
• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N 
times speedup?

!21
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Why the Sequential Bottleneck?
• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
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    loop { 
        Compute 
        P(A) 
            Update shared data 
        V(A) 
     }
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Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up

!23
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
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Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law


• f: Parallelizable fraction of a program 
• N: Number of processors (i.e., maximal achievable speedup)

!23

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

• Completely parallelizable (f = 1): Speedup = N
• Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Single core 
• Multi-core 
• Cache coherence

!24
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Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

!25

Thread A Thread B Thread C

Sequential Multi-threaded
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Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled, 

switch to Thread C. Improves the overall performance.

!26

Thread A Thread B Thread C

Cache

Miss!
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When to Switch?

!27

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle 
• Thornton, “CDC 6600: Design of a Computer,” 1970. 
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

•Either way, need to save/restore thread context upon 
switching.
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Fine-Grained Switching
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•One big bonus of fine-grained switching: no need for 
branch predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

    xorg %rax, %rax 
    jne L1            # Not taken

irmovq $3, %rax   # Target + 1

irmovq $1, %rax   # Fall Through
L1  irmovq $4, %rcx   # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach
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•One big bonus of fine-grained switching: no need for branch 
predictor!!
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The fine-grained multi-threading approach
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Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …
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predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).
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Fine-Grained Switching

!30

•One big bonus of fine-grained switching: no need for branch 
predictor!!

• Context switching overhead would be very high! Use separate 
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.
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