CSC 252: Computer Organization
Spring 2023: Lecture 25

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester



Announcements

* Virtual Memory problem set: https://www.cs.rochester.edu/courses/252/
spring2023/handouts.html

- Not to be turned in. Won't be graded.
e Assignment 5 due April 21.
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Synchronizing Threads

* Shared variables are handy...

e _..but introduce the possibility of nasty synchronization errors.



Improper Synchronization

/* Global shared variable x/
volatile long cnt = @; /% Counter x/

int main(int argc, char xxargv)
{
pthread_t tidl, tid2;
long niters = 10000;

Pthread_create(&tidl, NULL,
thread, &niters);
Pthread_create(&tid2, NULL,
thread, &niters);
Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL);

/* Check result x/
if (cnt !'= (2 x 10000))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1d\n", cnt);
exit(0);
I3 badcnt.c

/* Thread routine */
void xthread(void xvargp)
{
long 1, niters =
x((long *)vargp);
i++)

for (1 = 0; i < niters;

cnt++;

return NULL;

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/
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/* Global shared variable x/
volatile long cnt = @; /% Counter x/

int main(int argc, char xxargv)
{
pthread_t tidl, tid2;
long niters = 10000;

Pthread_create(&tidl, NULL,
thread, &niters);
Pthread_create(&tid2, NULL,
thread, &niters);
Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL);

/* Check result x/
if (cnt != (2 % 10000))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1d\n", cnt);
exit(0);
I3 badcnt.c

/* Thread routine x/
void xthread(void xvargp)

{

long 1, niters =
x((long *)vargp);
i++)

for (1 = 0; i < niters;

cnt++;

return NULL;
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linux> ./badcnt
OK cnt=20000

linux> ./badcnt
BOOM! cnt=13051

cnt should be 20,000.

What went wrong?




Assembly Code for Counter Loop

C code for counter loop in thread i

for

(1 =

0; i < niters; i++)
cnt++;

Asm code for thread i

movqg

$rdi) , %rcx

testqg %rcx, srcx

jle

.L2:

.L2

cnt (%rip) , Srdx
$1, %rdx
$rdx, cnt(%rip)

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail



Concurrent Execution

* Key observation: In general, any sequentially consistent
interleaving is possible, but some give an unexpected result!

i (thread) instr;, %rdx, %rdx, cnt

(shared)
Thread 1

1 L, 0 = 0 critical section
1 U1 1 - 0
1 S, 1 - 1 Thread 2
2 L, - 1 1 critical section
2 U, - 2 1
2 S, - 2 2

L

i movqg cnt(%rip) ,%rdx
;| addg $1, %$rdx
S.| movqg %rdx, cnt(%rip)

c




Concurrent Execution (cont)

* A legal (feasible) but undesired ordering: two threads increment
the counter, but the result is 1 instead of 2

i (thread) instr;  %rdx, %rdx, cnt

(shared)
1 L, 0 - 0
1 U1 1 = 0
2 L, - 0 0
1 S, 1 - 1
2 U, - 1 1
2 S, - 1 1
L; movqg cnt(%rip) ,%rdx
U/| addg $1, %rdx
S;| movqg $%rdx, cnt(%rip)




Assembly Code for Counter Loop

critical
section
wrt cnt

for (1 = 0; 1 < niters; i++)
cnt++;
Asm code for thread i
movq $rdi) , %Srcx
testqg %rcx,srcx
jle .L2  Hi
movl $0, %eax N
.L.3:
movqg cnt(%rip) ,%rdx h
addg $1, %rdx » U,
movqg %rdx, cnt(%rip) S.
"""" addq $1, $rax 1)
cmpqg S3rcx, 3rax
jne .L3 T

.L2:

C code for counter loop in thread i

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail



Critical Section

e Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

« Critical section refers to code, but its intention is to protect datal

movqg (%rdi), Srcx
testqg %rcx,srcx

jle L2 » H,: Head
_______ movl $0, %eax
critical — e
. movqg cnt(%rip),%$rdx L;:Load cnt
Seftlor:: addg $1, %rdx » U.: Update ent
wrt cn movqg $%rdx, cnt(%rip) .
_______ addqg $1, S$rax . ;3 Store ent
cmpg 3rcx, 5srax
jne  .L3 [ T;: Tail

.L2:




Critical Section

e Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

« Critical section refers to code, but its intention is to protect datal

e Threads need to have mutually exclusive access to critical section. That
is, the execution of the critical section must be atomic: instructions in a
CS either are executed entirely without interruption or not executed at all.

critical
section
wrt cnt

.L2:

movq
testqg

($rdi) , %rcx
$rcx, srcex
.L2

cnt (%rip) , Srdx
$1, %rdx
$rdx, cnt(%rip)

$rcx, %Srax
.L3

\

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail



Enforcing Mutual Exclusion

* We must coordinate/synchronize the execution of the threads

* i.e., need to guarantee mutually exclusive access for each critical
section.

e Classic solution:
« Semaphores/mutex (Edsger Dijkstra)

e Other approaches
« Condition variables
« Monitors (Java)
« 254/258 discusses these

10
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Using Semaphores for Mutual Exclusion

* Basic idea:

» Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

» Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
O (through a P operation) and enters the critical section. If it’s O, wait.

* Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

 No more than one thread can be in the critical section at a time.
e Terminology

» Binary semaphore is also called mutex (i.e., the semaphore value
could only be O or 1)

» Think of P operation as “locking”, and V as “unlocking”.
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Proper Synchronization

e Define and initialize a mutex for the shared variable cnt :

volatile long cnt = 0; /% Counter x/
sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 %/

« Surround critical section with P and V:

for (1 = 0; 1 < niters; 1++) { linux> ./goodecnt 10000
P(&mutex) ; OK cnt=20000
cnt++; linux> ./goodent 10000
V(&mutex) ; OK cnt=20000
} linux>
goodcnt.c

Warning: It’s orders of magnitude
slower than badcnt.c.

12



Problem?

e \Wouldn’t there be a problem when multiple threads access the
mutex? How do we ensure exclusive accesses to mutex itself?

for (1 = 0; 1 < niters; i++) {
P(&mutex);

cnt++;
V(&mutex) ;

} goodcnt.c
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Problem?

e \Wouldn’t there be a problem when multiple threads access the
mutex? How do we ensure exclusive accesses to mutex itself?

e Hardware MUST provide mechanisms for atomic accesses to the
mutex variable.

- Checking mutex value and setting its value must be an atomic
unit: they either are performed entirely or not performed at all.

for (1 = 0; 1 < niters; i++) {
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cnt++;
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}

goodcnt.c
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Problem?

e \Wouldn’t there be a problem when multiple threads access the
mutex? How do we ensure exclusive accesses to mutex itself?

e Hardware MUST provide mechanisms for atomic accesses to the
mutex variable.

- Checking mutex value and setting its value must be an atomic
unit: they either are performed entirely or not performed at all.

- on x86: the atomic test-and-set instruction.

for (1 = 0; 1 < niters; i++) {
P(&mutex);
cnt++;
V(&mutex);

}

goodcnt.c

function Lock(boolean *lock) {
while (test and set(lock) == 1);
}
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Deadlock

* Def: A process/thread is deadlocked if and only if it is waiting for
a condition that will never be true

* General to concurrent/parallel programming (threads,
Processes)

* Typical Scenario
* Processes 1 and 2 needs two resources (A and B) to proceed
* Process 1 acquires A, waits for B
e Process 2 acquires B, waits for A
« Both will wait forever!

14



Deadlocking With Semaphores

{

int

void xcount(void *vargp)

int 1i;
int id = (int) vargp;
for (i = @; i < NITERS; i++) {

P(&mutex[id]); P(&mutex[1-id]);
cnt++;
V(&mutex[id]); V(&mutex[1-id]);
}
return NULL;

main()

pthread_t tid[2];
Sem_init(&mutex[0], @, 1); /* mutex[0] = 1 %/
Sem_init(&mutex[1], 0, 1); /% mutex[1l] = 1 %/

Pthread _create(&tid[@], NULL, count, (voidx) 0);
Pthread create(&tid[1], NULL, count, (voidx) 1);

Pthread_join(tid[@], NULL);
Pthread_join(tid[1], NULL);
printf("cnt=%d\n", cnt);
exit(0);

Tid[O0]:

P(s,);
P(s,);
cnt++;
V(sy);
V(s,);

Tid[1]:

P(s,);

P(so);
cnt++;
V(s,);
V(sy);

15



Avoiding Deadlock

Tid[0]:

P(s,);
P(s;);
cnt++;
V(s,);
V(s,);

Tid[0]:

P(s0Q);
P(sl1);
cnt++;
V(s0);
V(sl);

Tid[1]:

P(s;);
P(sy);
cnt++;
V(s,);
V(s,);

Tid[1]:

P(s0Q);
P(sl1);
cnt++;
V(sl);
V(s0);

Acquire shared resources in same order

16



Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.
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static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);
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Another Deadlock Example: Signal Handling

e Signal handlers are concurrent with main program and may
share the same global data structures.

static int x = 5;
void handler(int sig)

{
}

X = 10;

int main(int argc, char xxargv)
{
int pid;
Signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /* Child */
Execve("/bin/date", argv, NULL);

I
if (x == 5)

y = x % 2; // You'd expect y == 10
exit(0);

What if the following happens:

* Parent process executes and
finishes 1f (x == 5)

e OS decides to take the
SIGCHLD interrupt and
executes the handler

e \WWhen return to parent
process, y == 20!
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Fixing the Signal Handling Bug

static int x = 5;
void handler(int sig)
{ * Block all signals before

x = 10; accessing a shared,

; global data structure.

int main(int argc, char *kargv)
{
int pid;
sigset_t mask_all, prev_all;
sigfillset(&mask_all);
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /*x Child *x/
Execve("/bin/date", argv, NULL);

Iy
Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
if (x == 5)

y = x x 2; // You'd expect y == 10
Sigprocmask(SIG_SETMASK, &prev_all, NULL);

exit(0);

18




How About Using a Mutex?

static int x = 5;
void handler(int sig)

{
P(&mutex);
x = 10;
V(&mutex) ;
}
int main(int argc, char xxargv)
{

int pid;
sigset_t mask_all, prev_all;
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);
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How About Using a Mutex?

{

int

static int x = 5;
void handler(int sig)

P(&mutex);
x = 10;
V(&mutex);

main(int argc, char *xargv)

int pid;
sigset_t mask_all, prev_all;
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);

 This implementation
will get into a deadlock.
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X = 10;
V(&mutex);

main(int argc, char *xargv)
int pid;
sigset_t mask_all, prev_all;

signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);

}
P(&mutex);
if (x == 5)

y =X *x 2; // You'd expect y == 10
V(&mutex);

exit(0);

 This implementation

will get into a deadlock.
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the mutex, which is
acquired by the main
program.
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How About Using a Mutex?

{

int

static int x = 5;
void handler(int sig)

P(&mutex);
X = 10;
V(&mutex);

main(int argc, char *xargv)

int pid;
sigset_t mask_all, prev_all;
signal(SIGCHLD, handler);

if ((pid = Fork()) == 0) { /x Child *x/
Execve("/bin/date", argv, NULL);
¥

P(&mutex);
if (x == 5)

y = X % 2; // You'd expect y == 10
V(&mutex);

exit(0);

 This implementation

will get into a deadlock.

Signal handler wants
the mutex, which is
acquired by the main
program.

Key: signal handler is in
the same process/
thread as the main
program. The kernel
forces the handler to
finish before returning
to the main program.
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Summary of Multi-threading Programming

* Concurrent/parallel threads access shared variables

* Need to protect concurrent accesses to guarantee correctness
e Semaphores (e.g., mutex) provide a simple solution

* Can lead to deadlock if not careful

* Take CSC 254/258 to know more about avoiding deadlocks
(and parallel programming in general)

20



Thread-level Parallelism (TLP)

* Thread-Level Parallelism
« Splitting a task into independent sub-tasks
« Each thread is responsible for a sub-task
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Thread-level Parallelism (TLP)

* Thread-Level Parallelism
« Splitting a task into independent sub-tasks
« Each thread is responsible for a sub-task
* Example: Parallel summation of N number
e Partition values 7, ..., n-1 into t ranges, Ln/t] values each range

« Each of t threads processes one range (sub-task)
e Sum all sub-sums in the end

e Question: if you parallel you work N ways, do you always an N
times speedup?
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| * Maximum speedup limited by the
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Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
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Amdahl’s Law

* Gene Amdanhl (1922 — 2015). Giant in computer architecture
e Captures the difficulty of using parallelism to speed things up

* Amdahl’s Law
« f: Parallelizable fraction of a program
* N: Number of processors (i.e., maximal achievable speedup)

1
Speedup =

1-f 4

* Completely parallelizable (f = 1): Speedup = N
e Completely sequential (f = 0): Speedup = 1
* Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9

Amdanhl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.
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Today

* Hardware support of threads
e Single core

24



Can A Single Core Support Multi-threading?

* Need to multiplex between different threads (time slicing)

Sequential Multi-threaded

Thread A Thread B Thread C
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Any benefits?

* Can single-core multi-threading provide any performance gains?

Thread A Thread B Thread C
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Any benefits?

* Can single-core multi-threading provide any performance gains?

e If Thread A has a cache miss and the pipeline gets stalled,
switch to Thread C. Improves the overall performance.

Thread A Thread B Thread C
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When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)
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When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

* Fine grained
» Cycle by cycle
e Thornton, “CDC 6600: Design of a Computer,” 1970.
e Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP
1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.
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When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

* Fine grained
» Cycle by cycle
e Thornton, “CDC 6600: Design of a Computer,” 1970.
e Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

e Either way, need to save/restore thread context upon
switching.
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for

The stalling approach

L1

branch predictor!!

X0rg %srax, Ssrax
jne L1

Stall
Stall
irmovg $1, %rax
irmovg $4, %rcx
irmovg $3, %rax

m

# Not taken

# Fall Through
# Target
# Target + 1

m

O

<
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for

branch predictor!!

The branch prediction approach

# demo-7j.ys
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Xorq %rax,

: Jjne target

irmovq $2,%

x015: halt

bubble

20: irmovqg $3,%rbx #
bubble

: irmovqg $1,%rax #

o |
-

arget+l

Fall through
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=
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch

predictor!!

The fine-grained multi-threading approach

X0rg %Srax, %srax
Inst x from TID=1
Inst y from TID=2
jne L1

Inst x+1 from TID=
Inst y+1 from TID=

irmovg $1, %rax

Inst x+2 from TID=
Inst y+2 from TID=

]

2

3

F

D

# Not taken
1
2

# Fall Through
1
2

F

m O m

mom<Z

Mmoo mZ|S

Mmoo mZ S

momZzZ s

mom<Z s

momZ S
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch
predictor!!
» Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.q., separate register files).

The fine-grained multi-threading approach

Inst y+1 from TID=

X0rg %srax, srax F' D E M W
Inst x from TID=1 F D  E| M| W
Inst y from TID=2 F' D E M | W
jne L1 # Not taken F D | E M
Inst x+1 from TID=1 F D | E
F | D
F

irmovg $1, %rax

Inst x+2 from TID=
Inst y+2 from TID=

]

2

3

2
# Fall Through
1
2

mom<Z s

momZ S
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Fine-Grained Switching

* One big bonus of fine-grained switching: no need for branch
predictor!!
» Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).
* GPUs do this (among other things). More later.

The fine-grained multi-threading approach

X0rg %Srax, %srax
Inst x from TID=1
Inst y from TID=2
jne L1

Inst x+1 from TID=
Inst y+1 from TID=

irmovg $1, %rax

Inst x+2 from TID=
Inst y+2 from TID=

]

2

3

F

D

# Not taken

1

2

# Fall Through
1

2

F

m O m

mom<Z

Mmoo mZ|S

Mmoo mZ S

momZzZ s

mom<Z s

momZ S
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