
CSC 252: Computer Organization 
 Spring 2023: Lecture 25 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Announcements

!2

• Virtual Memory problem set: https://www.cs.rochester.edu/courses/252/
spring2023/handouts.html

• Not to be turned in. Won’t be graded.
• Assignment 5 due April 21.

Today

Due

Final

Last Class

https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html

Carnegie Mellon

Synchronizing Threads
• Shared variables are handy...

•…but introduce the possibility of nasty synchronization errors.

!3

Carnegie Mellon

Improper Synchronization

!4

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 pthread_t tid1, tid2;
 long niters = 10000;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * 10000))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/

Carnegie Mellon

Improper Synchronization

!4

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 pthread_t tid1, tid2;
 long niters = 10000;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * 10000))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

linux> ./badcnt
OK cnt=20000

linux> ./badcnt
BOOM! cnt=13051

cnt should be 20,000.

What went wrong?
badcnt.c

https://www.geeksforgeeks.org/understanding-volatile-qualifier-in-c/

Carnegie Mellon

Assembly Code for Counter Loop

!5

for (i = 0; i < niters; i++)
 cnt++;

C code for counter loop in thread i

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

Concurrent Execution
• Key observation: In general, any sequentially consistent

interleaving is possible, but some give an unexpected result!

!6

L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri
cnt

(shared)
%rdx1

-
-
-
1
2
2

%rdx2

Thread 1
critical section
Thread 2
critical section

 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)

Li
Ui
Si

Carnegie Mellon

Concurrent Execution (cont)
• A legal (feasible) but undesired ordering: two threads increment

the counter, but the result is 1 instead of 2

!7

L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri %rdx1

-
-
0
-
1
1

%rdx2
cnt

(shared)

 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)

Li
Ui
Si

Carnegie Mellon

Assembly Code for Counter Loop

!8

for (i = 0; i < niters; i++)
 cnt++;

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

critical
section
wrt cnt

C code for counter loop in thread i

Carnegie Mellon

Critical Section

!9

• Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

• Critical section refers to code, but its intention is to protect data!

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

critical
section
wrt cnt

Carnegie Mellon

Critical Section

!9

• Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

• Critical section refers to code, but its intention is to protect data!
• Threads need to have mutually exclusive access to critical section. That

is, the execution of the critical section must be atomic: instructions in a
CS either are executed entirely without interruption or not executed at all.

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

critical
section
wrt cnt

Carnegie Mellon

Enforcing Mutual Exclusion
•We must coordinate/synchronize the execution of the threads

• i.e., need to guarantee mutually exclusive access for each critical
section.

• Classic solution:

• Semaphores/mutex (Edsger Dijkstra)

• Other approaches

• Condition variables
• Monitors (Java)
• 254/258 discusses these

!10

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value

could only be 0 or 1)

!11

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1.

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value to
0 (through a P operation) and enters the critical section. If it’s 0, wait.

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads are
now allowed to enter the critical section.

• No more than one thread can be in the critical section at a time.

• Terminology
• Binary semaphore is also called mutex (i.e., the semaphore value

could only be 0 or 1)
• Think of P operation as “locking”, and V as “unlocking”.

!11

Carnegie Mellon

Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

!12

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude
slower than badcnt.c.

goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?

!13

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.

!13

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.
• Checking mutex value and setting its value must be an atomic

unit: they either are performed entirely or not performed at all.

!13

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.
• Checking mutex value and setting its value must be an atomic

unit: they either are performed entirely or not performed at all.
• on x86: the atomic test-and-set instruction.

!13

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

Carnegie Mellon

Problem?
• Wouldn’t there be a problem when multiple threads access the

mutex? How do we ensure exclusive accesses to mutex itself?
• Hardware MUST provide mechanisms for atomic accesses to the

mutex variable.
• Checking mutex value and setting its value must be an atomic

unit: they either are performed entirely or not performed at all.
• on x86: the atomic test-and-set instruction.

!13

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 } goodcnt.c

function Lock(boolean *lock) {
 while (test_and_set(lock) == 1);
}

Carnegie Mellon

Deadlock
• Def: A process/thread is deadlocked if and only if it is waiting for

a condition that will never be true

• General to concurrent/parallel programming (threads,

processes)

• Typical Scenario

• Processes 1 and 2 needs two resources (A and B) to proceed
• Process 1 acquires A, waits for B
• Process 2 acquires B, waits for A
• Both will wait forever!

!14

Carnegie Mellon

Deadlocking With Semaphores

!15

void *count(void *vargp)
{
 int i;
 int id = (int) vargp;
 for (i = 0; i < NITERS; i++) {
 P(&mutex[id]); P(&mutex[1-id]);
 cnt++;
 V(&mutex[id]); V(&mutex[1-id]);
 }
 return NULL;
}

int main()
{
 pthread_t tid[2];
 Sem_init(&mutex[0], 0, 1); /* mutex[0] = 1 */
 Sem_init(&mutex[1], 0, 1); /* mutex[1] = 1 */
 Pthread_create(&tid[0], NULL, count, (void*) 0);
 Pthread_create(&tid[1], NULL, count, (void*) 1);
 Pthread_join(tid[0], NULL);
 Pthread_join(tid[1], NULL);
 printf("cnt=%d\n", cnt);
 exit(0);
}

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

Avoiding Deadlock

!16

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s0);
P(s1);
cnt++;
V(s1);
V(s0);

Acquire shared resources in same order

Tid[0]:
P(s0);
P(s1);
cnt++;
V(s0);
V(s1);

Tid[1]:
P(s1);
P(s0);
cnt++;
V(s1);
V(s0);

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• OS decides to take the

SIGCHLD interrupt and
executes the handler

Carnegie Mellon

Another Deadlock Example: Signal Handling

• Signal handlers are concurrent with main program and may
share the same global data structures.

!17

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 if (x == 5)
 y = x * 2; // You’d expect y == 10
 exit(0);
}

What if the following happens:
• Parent process executes and

finishes if (x == 5)
• OS decides to take the

SIGCHLD interrupt and
executes the handler

• When return to parent
process, y == 20!

Carnegie Mellon

Fixing the Signal Handling Bug

!18

static int x = 5;
void handler(int sig)
{
 x = 10;
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 sigfillset(&mask_all);
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);
}

• Block all signals before
accessing a shared,
global data structure.

Carnegie Mellon

How About Using a Mutex?

!19

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

Carnegie Mellon

How About Using a Mutex?

!19

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

Carnegie Mellon

How About Using a Mutex?

!19

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

• Signal handler wants
the mutex, which is
acquired by the main
program.

Carnegie Mellon

How About Using a Mutex?

!19

static int x = 5;
void handler(int sig)
{
 P(&mutex);
 x = 10;
 V(&mutex);
}

int main(int argc, char **argv)
{
 int pid;
 sigset_t mask_all, prev_all;
 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */
 Execve("/bin/date", argv, NULL);
 }

 P(&mutex);
 if (x == 5)
 y = x * 2; // You’d expect y == 10
 V(&mutex);

 exit(0);
}

• This implementation
will get into a deadlock.

• Signal handler wants
the mutex, which is
acquired by the main
program.

• Key: signal handler is in
the same process/
thread as the main
program. The kernel
forces the handler to
finish before returning
to the main program.

Carnegie Mellon

Summary of Multi-threading Programming
• Concurrent/parallel threads access shared variables

• Need to protect concurrent accesses to guarantee correctness

• Semaphores (e.g., mutex) provide a simple solution

• Can lead to deadlock if not careful

• Take CSC 254/258 to know more about avoiding deadlocks

(and parallel programming in general)

!20

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks
• Each thread is responsible for a sub-task

!21

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 1, …, n-1 into t ranges,⎣n/t⎦ values each range

• Each of t threads processes one range (sub-task)
• Sum all sub-sums in the end

!21

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number

• Partition values 1, …, n-1 into t ranges,⎣n/t⎦ values each range

• Each of t threads processes one range (sub-task)
• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N
times speedup?

!21

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data

!22

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!22

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!22

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!22

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!22

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!22

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up

!23
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23
Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

+1 - f

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

• Completely parallelizable (f = 1): Speedup = N

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

• Completely parallelizable (f = 1): Speedup = N
• Completely sequential (f = 0): Speedup = 1

Carnegie Mellon

Amdahl’s Law

•Gene Amdahl (1922 – 2015). Giant in computer architecture
•Captures the difficulty of using parallelism to speed things up
• Amdahl’s Law

• f: Parallelizable fraction of a program
• N: Number of processors (i.e., maximal achievable speedup)

!23

Speedup =
1

+1 - f f
N

Amdahl, “Validity of the single processor approach to achieving large scale computing capabilities,” 1967.

• Completely parallelizable (f = 1): Speedup = N
• Completely sequential (f = 0): Speedup = 1
•Mostly parallelizable (f = 0.9, N = 1000): Speedup = 9.9

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Single core
• Multi-core
• Cache coherence

!24

Carnegie Mellon

Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

!25

Thread A Thread B Thread C

Sequential Multi-threaded

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!26

Thread A Thread B Thread C

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!26

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!26

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled,

switch to Thread C. Improves the overall performance.

!26

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

When to Switch?

!27

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

Carnegie Mellon

When to Switch?

!27

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

Carnegie Mellon

When to Switch?

!27

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. The HEP machine. A seminal paper that shows that using multi-
threading can avoid branch prediction.

•Either way, need to save/restore thread context upon
switching.

Carnegie Mellon

Fine-Grained Switching

!28

•One big bonus of fine-grained switching: no need for
branch predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax
 jne L1 # Not taken

irmovq $3, %rax # Target + 1

irmovq $1, %rax # Fall Through
L1 irmovq $4, %rcx # Target

Stall

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

Stall
Stall

Stall

The stalling approach

Carnegie Mellon

Fine-Grained Switching

!29

•One big bonus of fine-grained switching: no need for
branch predictor!!

The branch prediction approach

Carnegie Mellon

Fine-Grained Switching

!30

•One big bonus of fine-grained switching: no need for branch
predictor!!

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

!30

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

Carnegie Mellon

Fine-Grained Switching

!30

•One big bonus of fine-grained switching: no need for branch
predictor!!

• Context switching overhead would be very high! Use separate
hardware contexts for each thread (e.g., separate register files).

• GPUs do this (among other things). More later.

1

F

2

D
F

3

E
D

4

M
E

5

M
W

FF

 xorg %rax, %rax

 jne L1 # Not taken

irmovq $1, %rax # Fall Through

6

W

DD

7

EE

8

MM

9

WW
FF DD EE MM WW

FF DD EE MM

The fine-grained multi-threading approach

Inst x from TID=1

Inst x+1 from TID=1

FF DD EE MM WW
FF DD EE MM WW

Inst y from TID=2

Inst y+1 from TID=2

Inst x+2 from TID=1
Inst y+2 from TID=2

FF DD EE
FF DD

… …

