CSC 252: Computer Organization Spring 2023: Lecture 5

Instructor: Yuhao Zhu

Department of Computer Science University of Rochester

Announcement

- Programming Assignment 1 is out
 - Details: https://www.cs.rochester.edu/courses/252/spring2023/labs/assignment1.html
 - Due on Jan. 27, 11:59 PM
 - You have 3 slip days

15	16	17	18	19	20	21
22	23	24	Today	26	Due 27	28

Announcement

- Programming assignment 1 is in C language. Seek help from TAs.
- TAs are best positioned to answer your questions about programming assignments!!!
- Programming assignments do NOT repeat the lecture materials. They ask you to synthesize what you have learned from the lectures and work out something new.

Infinite Amount of Real Numbers

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE 754 Floating Point Standard

Single precision: 32 bits

• Double precision: 64 bits

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs (and even GPUs and other processors)

Driven by numerical concerns

- Nice standards for rounding, overflow, underflow
- Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

$$v = (-1)^s M 2^E$$

S	exp	frac
1	8-bit	23-bit

S	exp	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

0	exp	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

0	exp	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

$$v = (-1)^s M 2^E$$

$$v = (-1)^s M 2^E$$
 bias = $2^{(8-1)} - 1 = 127$

0	exp	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

$$\exp = E + bias = 140_{10}$$

$$v = (-1)^s M 2^E$$
 bias = $2^{(8-1)} - 1 = 127$

0	10001100	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

$$\exp = E + bias = 140_{10}$$

$$v = (-1)^s M 2^E$$
 bias = $2^{(8-1)} - 1 = 127$

0	10001100	frac
1	8-bit	23-bit

$$15213_{10} = 11101101101101_2$$
$$= (-1)^0 1.1101101101101_2 \times 2^{13}$$

$$\exp = E + bias = 140_{10}$$

$$v = (-1)^s M 2^E$$

$$v = (-1)^s M 2^E$$
 bias = $2^{(8-1)} - 1 = 127$

0	10001100	1101101101101000000000
1	8-bit	23-bit

$$15213_{10} = 11101101101101_{2}$$
$$= (-1)^{0} 1.1101101101101_{2} \times 2^{13}$$

$$\exp = E + bias = 140_{10}$$

Today: Floating Point

- Background: Fractional binary numbers and fixed-point
- Floating point representation
- IEEE 754 standard
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Computations

- The problem: Computing on floating point numbers might produce a result that can't be precisely represented
- Basic idea
 - We perform the operation & produce the infinitely precise result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding Modes (Decimal)

- Common ones:
 - Towards zero (chop)
 - Round down (-∞)
 - Round up (+∞)

Rounding Modes (Decimal)

- Common ones:
 - Towards zero (chop)
 - Round down (-∞)
 - Round up (+∞)
- Nearest Even: Round to nearest; if equally near, then to the one having an even least significant digit (bit)

Rounding Modes (Decimal)

- Common ones:
 - Towards zero (chop)
 - Round down (-∞)
 - Round up (+∞)
- Nearest Even: Round to nearest; if equally near, then to the one having an even least significant digit (bit)

Rounding Mode	1.40	1.60	1.50	2.50	-1.50
Towards zero	1	1	1	2	-1
Round down (-∞)	1	1	1	2	- 2
Round up (+∞)	2	2	2	3	-1
Nearest even (default)	1	2	2	2	- 2

- Nearest Even; if equally near, then to the one having an even least significant digit (bit)
- Assuming 3 bits for frac

- Nearest Even; if equally near, then to the one having an even least significant digit (bit)
- Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000011	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)

- Nearest Even; if equally near, then to the one having an even least significant digit (bit)
- Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000 <mark>011</mark>	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)

 Nearest Even; if equally near, then to the one having an even least significant digit (bit)

Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000011	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)

 Nearest Even; if equally near, then to the one having an even least significant digit (bit)

• Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000 <mark>011</mark>	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)

 Nearest Even; if equally near, then to the one having an even least significant digit (bit)

• Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000 <mark>011</mark>	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)

 Nearest Even; if equally near, then to the one having an even least significant digit (bit)

• Assuming 3 bits for frac

Precise Value	Rounded Value	Notes
1.000 <mark>011</mark>	1.000	1.000 is the nearest (down)
1.000110	1.001	1.001 is the nearest (up)
1.000100	1.000	1.000 is the nearest even (down)
1.001100	1.010	1.010 is the nearest even (up)


```
• (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
```

 $1.000 \times 2^{-1} + 11.10 \times 2^{-3}$

• $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$

 $1.000 \times 2^{-1} + 11.10 \times 2^{-3}$

align $1.000 \times 2^{-1} + 0.111 \times 2^{-1}$

• $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s, significand *M*:
 - Result of signed align & add
 - Exponent E: E1
 - Assume E1 > E2

Floating Point Addition

- $(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s, significand *M*:
 - Result of signed align & add
 - Exponent E: E1
 - Assume E1 > E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Commutative?

Commutative?

Commutative?

Yes

• Commutative? **Yes**

- Overflow and inexactness of rounding
- (3.14+1e10) 1e10 = 0, 3.14 + (1e10-1e10) = 3.14

• Commutative? Yes

- Overflow and inexactness of rounding
- (3.14+1e10) 1e10 = 0, 3.14 + (1e10-1e10) = 3.14
- 0 is additive identity?

• Commutative?

Associative?

Overflow and inexactness of rounding

• (3.14+1e10) - 1e10 = 0, 3.14 + (1e10-1e10) = 3.14

• 0 is additive identity? Yes

• Commutative? Yes

Associative?

- Overflow and inexactness of rounding
- (3.14+1e10) 1e10 = 0, 3.14 + (1e10-1e10) = 3.14
- 0 is additive identity?
 - Every element has additive inverse (negation)?

Yes

• Commutative?

Associative?

Overflow and inexactness of rounding

• (3.14+1e10) - 1e10 = 0, 3.14 + (1e10-1e10) = 3.14

• 0 is additive identity?

Yes

- Every element has additive inverse (negation)? Almost
 - Except for infinities & NaNs

• Commutative?

- Overflow and inexactness of rounding
- (3.14+1e10) 1e10 = 0, 3.14 + (1e10-1e10) = 3.14
- 0 is additive identity? Yes
- Every element has additive inverse (negation)? Almost
 - Except for infinities & NaNs
- Monotonicity: $a \ge b \Rightarrow a+c \ge b+c$?

Commutative? Yes

 Associative? No

Overflow and inexactness of rounding

• (3.14+1e10) - 1e10 = 0, 3.14 + (1e10-1e10)

0 is additive identity?

Yes

Every element has additive inverse (negation)?

Almost

Except for infinities & NaNs

• Monotonicity: $a \ge b \Rightarrow a+c \ge b+c$?

Almost

Except for infinities & NaNs

• $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)s M 2E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent *E*: *E1* + *E2*

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)s M 2E
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent *E*: *E1* + *E2*

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

- $(-1)^{s1} M1 2^{E1} \times (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)s M 2E
 - Sign s: s1 ^ s2
 - Significand *M*: *M1* x *M2*
 - Exponent *E*: *E1* + *E2*

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Multiplication Commutative?

Multiplication Commutative?

Yes

Multiplication Commutative?

Yes

Multiplication is Associative?

Multiplication Commutative?

Yes

Multiplication is Associative?

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

Multiplication Commutative?

Yes

Multiplication is Associative?

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Yes

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20*(1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity: $a \ge b$ & $c \ge 0 \Rightarrow a * c \ge b *c$?

Multiplication Commutative?

Yes

Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
- 1 is multiplicative identity?

Yes

Multiplication distributes over addition?

- Possibility of overflow, inexactness of rounding
- 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity: $a \ge b$ & $c \ge 0 \Rightarrow a * c \ge b * c$? *Almost*
 - Except for infinities & NaNs

IEEE 754 Floating Point Standard

• Single precision: 32 bits

Double precision: 64 bits

- In C language
 - •float single precision
 - •double double precision

Floating Point in C

32-bit Machine

Fixed point (implicit binary point)

SP floating point DP floating point

C Data Type	Bits	Max Value	Max Value (Decimal)
char	8	2 ⁷ - 1	127
short	16	2 ¹⁵ - 1	32767
int	32	2 ³¹ - 1	2147483647
long	64	2 ⁶³ - 1	~9.2 × 10 ¹⁸
float	32	$(2 - 2^{-23}) \times 2^{127}$	~3.4 × 10 ³⁸
double	64	$(2 - 2^{-52}) \times 2^{1023}$	~1.8 × 10 ³⁰⁸

Floating Point in C

32-bit Machine

Fixed point (implicit binary point)

SP floating point DP floating point

C Data Type	Bits	Max Value	Max Value (Decimal)
char	8	2 ⁷ - 1	127
short	16	2 ¹⁵ - 1	32767
int	32	2 ³¹ - 1	2147483647
long	64	2 ⁶³ - 1	~9.2 × 10 ¹⁸
float	32	$(2 - 2^{-23}) \times 2^{127}$	~3.4 × 10 ³⁸
double	64	$(2 - 2^{-52}) \times 2^{1023}$	~1.8 × 10 ³⁰⁸

- To represent 2³¹ in fixed-point, you need at least 32 bits
 - Because fixed-point is a weighted positional representation
- In floating-point, we directly encode the exponent
 - Floating point is based on scientific notation
 - Encoding 31 only needs 7 bits in the exp field

- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN

- double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN
- int → float

• double/float → int

- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN

• int → float

Can't guarantee exact casting. Will round according to rounding mode

• double/float → int

- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN

• int → float

Can't guarantee exact casting. Will round according to rounding mode

• int → double

S	exp	frac
1	11-bit	52-bit

• double/float → int

- Truncates fractional part
- Like rounding toward zero
- Not defined when out of range or NaN

• int → float

Can't guarantee exact casting. Will round according to rounding mode

- int → double
 - Exact conversion

S	exp	frac
1	11-bit	52-bit

C Program

int, float
if, else
+, -, >>

C Program

Compiler

Assembly

Program

Machine Code int, float
if, else
+, -, >>

ret, call
fadd, add
jmp, jne

00001111 01010101 11110000

High-Level Language

High-Level Language

Instruction Set Architecture (ISA)

- ISA: Software programmers' view of a computer
 - Provide all info for someone wants to write assembly/machine code
 - "Contract" between assembly/ machine code and processor

High-Level Language

Instruction Set Architecture (ISA)

- ISA: Software programmers' view of a computer
 - Provide all info for someone wants to write assembly/machine code
 - "Contract" between assembly/ machine code and processor
- Processors execute machine code (binary). Assembly program is merely a text representation of machine code

High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuit

- ISA: Software programmers' view of a computer
 - Provide all info for someone wants to write assembly/machine code
 - "Contract" between assembly/ machine code and processor
- Processors execute machine code (binary). Assembly program is merely a text representation of machine code
- Microarchitecture: Hardware implementation of the ISA (with the help of circuit technologies)

This Module (4 Lectures)

High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuit

- Assembly Programming
 - Explain how various C constructs are implemented in assembly code
 - Effectively translating from C to assembly program manually
 - Helps us understand how compilers work
 - Helps us understand how assemblers work
- Microarchitecture is the topic of the next module

Today: Assembly Programming I: Basics

- Different ISAs and history behind them
- C, assembly, machine code
- Move operations (and addressing modes)

- There used to be many ISAs
 - x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
 - Very consolidated today: ARM for mobile, x86 for others

- There used to be many ISAs
 - x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
 - Very consolidated today: ARM for mobile, x86 for others
- There are even more microarchitectures
 - Apple/Samsung/Qualcomm have their own microarchitecture (implementation) of the ARM ISA
 - Intel and AMD have different microarchitectures for x86

- There used to be many ISAs
 - x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
 - Very consolidated today: ARM for mobile, x86 for others
- There are even more microarchitectures
 - Apple/Samsung/Qualcomm have their own microarchitecture (implementation) of the ARM ISA
 - Intel and AMD have different microarchitectures for x86
- ISA is lucrative business: ARM's Business Model
 - Patent the ISA, and then license the ISA
 - Every implementer pays a royalty to ARM
 - Apple/Samsung pays ARM whenever they sell a smartphone

Intel x86 ISA

Dominate laptop/desktop/cloud market

Intel x86 ISA

Dominate laptop/desktop/cloud market

Intel x86 ISA

Dominate laptop/desktop/cloud market

Aside: Dynamic Binary Translation

macOS Monterey Version 12.0.1 MacBook Pro (16-inch, 2021) Chip Apple M1 Pro Memory 16 GB Serial Number VQ4GVYVN6F

- Apple M1 is based on the Arm ISA. A program compiled to x86 ISA is dynamically translated to Arm ISA by Rosetta.
- Not the first time Apple plays this trick.

Aside: Dynamic Binary Translation

Intel x86 ISA Evolution (Milestones)

Evolutionary design: Added more features as time goes on

Intel x86 ISA Evolution (Milestones)

Evolutionary design: Added more features as time goes on

Date	Feature	Notable Implementation
1974	8-bit ISA	8080
1978	16-bit ISA (Basis for IBM PC & DOS)	8086
1980	Add Floating Point instructions	8087
1985	32-bit ISA (Refer to as IA32)	386
1997	Add Multi-Media eXtension (MMX)	Pentium/MMX
1999	Add Streaming SIMD Extension (SSE)	Pentium III
2001	Intel's first attempt at 64-bit ISA (IA64, failed)	Itanium
2004	Implement AMD's 64-bit ISA (x86-64, AMD64)	Pentium 4E
2008	Add Advanced Vector Extension (AVE)	Core i7 Sandy Bridge

Intel x86 ISA Evolution (Milestones)

Evolutionary design: Added more features as time goes on

Backward Compatibility

- Binary executable generated for an older processor can execute on a newer processor
- Allows legacy code to be executed on newer machines
 - Buy new machines without changing the software
- x86 is backward compatible up until 8086 (16-bit ISA)
 - i.e., an 8086 binary executable can be executed on any of today's x86 machines
- Great for users, nasty for processor implementers
 - Every instruction you put into the ISA, you are stuck with it FOREVER

Historically

- AMD build processors for x86 ISA
- A little bit slower, a lot cheaper

- Developed x86-64, their own 64-bit x86 extension to IA32
- Built first 1 GHz CPU
- Intel felt hard to admit mistake or that AMD was better
- 2004: Intel Announces EM64T extension to IA32
 - Almost identical to x86-64!
 - Today's 64-bit x86 ISA is basically AMD's original proposal

Today: Holding up not too badly

Today: Holding up not too badly

Today: Holding up not too badly

Market Summary > Advanced Micro Devices, Inc.

