
Midterm Exam

CSC 252

25 March 2021

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Rongcui Dong, Elana Elman, Kalen Frieberg, Sudhanshu Gupta, Yiyao (Jack) Yu, Vladimir
Maksimovski, Nathan Reed, Rafaello Sanna

Name: ____________________________________

Problem 0 (2 points):

Problem 1 (15 points):

Problem 2 (10 points):

Problem 3 (17 points):

Problem 4 (13 points):

Problem 5 (6 points)

Problem 6 (12 points):

Total (75 points):

Extra Credit (10 points)

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.l

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 75 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (2 Points)

Is assembly programming more fun than programming in Java?

Problem 1: Fixed-Point Arithmetics (15 points)

Part a) (4 points) Represent the decimal number 92 in binary.

1011100

Part b) (4 points) What is the decimal representation of the base 5 number 243?

73

Part c) (4 points) What is the 2’s complement representation of the decimal value -92?

Assuming an 8-bit representation. Express your answer in hexadecimal.

0xA4

Part d) (3 points) If 4-bit registers R1 and R2 contain the values 1100 and 0111 respectively,

what are the values of the carry, overflow, and sign flags after the operation “add R1, R2”?

Carry: 1

Overflow: 0

Sign: 0

2

Problem 2: Floating-Point Arithmetics (10 points + 4 points extra credit)

Part a) (4 points) Put into the binary normalized form.19 3
8

10011.011 => 1.0011011 * 2^4

Part b) (6 points) The IEEE has decided to introduce a new 14-bit floating-point standard,

whose main characteristics are consistent with existing floating-point number representations

that we discussed in the class.

The following is the encoding of in this 14-bit standard: 00110100010000
17
64

How many bits are used for the exponent? How many for the fraction?

Exponent: 5 bits, Fraction: 8 bits

Part c) (4 points extra credit)

The IEEE 754 floating-point standard states that a NaN is considered “quiet” if its most

significant fractional bit is 1, and “signaling” if its most significant fractional bit is 0. Some

programming languages take advantage of this feature to encode pointers. In particular, a

pointer is stored as the fractional bit of a quiet NaN. This technique is called “NaN boxing.”

NaNs used for “NaN boxing” (i.e., store pointers) always have their second most significant

fractional bit set to 1, whereas NaNs that are meant to store actual NaN values set that bit to 0.

Suppose a programming language were to use NaN boxing. The language uses the IEEE 754

32-bit floating point representation. What’s the maximum number of bits in a pointer that can

be stored in a NaN using NaN boxing?

21 bits (23 - 2 for metadata)

Suppose we wanted to store a pointer value 0xF3CB in a 32-bit NaN. Write the binary encoding

of this NaN value. Pad any bits that are irrelevant to this problem with zeros.

0 00000000 11 000 1111001111001011
S EEEEEEEE MM PPP DDDDDDDDDDDDDDDD

3

Problem 3: Logic Design (17 points)

Part a) (6 points)

(3 points) What is the result of a bit-wise XOR between 0101 and 1001?

1100

(3 points) What is the result of a bit-wise NOR between 0101 and 1001?

0010

Part b) (6 points)

A two-input MUX selects between the two inputs (In0 and In1) according to the select signal S.

The diagram and truth table of a 2-input MUX are shown below. A MUX gate simply sets its

output OUT to In0 if S is 0 and sets OUT to In1 if S is 1.

We can construct other basic logic gates using only MUXes. For instance, we can construct a

2-input OR gate that computes A OR B using a two-input MUX by setting its inputs as follows:

● In0 = B
● In1 = constant value of 1
● S = A

This will give us A OR B at OUT.

(3 points) Construct a NOT gate that computes !A using only one two-input MUX. A is the

input signal to the NOT gate. Specify what In0, In1, and S should be in this MUX.

4

In0 is:

1

In1 is:

0

S is:

A

(3 points) Construct a two-input AND gate that computes A AND B using only one two-input

MUX. A and B are the input signals to the AND gate. Specify what In0, In1, and S should be in

this MUX.

In0 is:

0

In1 is:

B

S is:

A

Part c) (5 points)

(3 points) The combinational circuit shown below takes in three 1-bit inputs: A, B, and C, and

produces one 1-bit output: Out. The relationship between A, B, C, and Out is shown in the

accompanying truth table.

This circuit contains two identical but unknown gates X. What is gate X so that the circuit

matches the given truth table?

5

X is:

OR

(2 points) Assuming the delay of each gate is 1ps, what is the delay of the entire circuit?

3ps

6

Problem 4: Assembly Programming I (13 points)

Conventions:

1. For this section, the assembly shown uses the syntax opcode src, dst for

instructions with two arguments where src is the source argument and dst is the

destination argument. For example, this means that mov a, b moves the value a into b
and sub a, b computes the value (b - a) and stores it in b. All C code is compiled on a

64-bit machine, where arrays grow towards higher addresses.

2. Also, for functions that take two arguments, the first argument is stored in %rdi and the

second is stored in %rsi at the time the function is called. The return value of this

function is stored in %eax at the time the function returns.

Consider the following code:

typedef struct {
char netid[12];
char *name;
int sid;
double gpa;

} Student;

void print_ten_students() {
Student[10] students;

print_gpa(students[0].gpa);
print_netid(students[3].netid);
print_studentid(students[3].sid);

}

Assume that the beginning address of students is stored in %rbx. Also assume that the

compiler doesn’t reorder struct fields.

(10 points) The following table contains source code lines from print_ten_students()
and the corresponding assembly snippets. The letters A, B, C, D, and E represent blanks in the

assembly code. Fill in the blanks with appropriate instructions or hexadecimal offsets so that the

function call succeeds.

7

C function Assembly (Fill in the blanks)

print_gpa(students[0].gpa); movq A (%rbx),%rdi
callq 40118e <print_gpa>

print_netid(students[3].netid); B (%rbx,0x3, C),%rdi
callq 401136 <print_netid>

print_studentid(students[3].sid); lea (%rbx,0x3, D),%rdi
movq E (%rdi),%edi
callq 40116c <print_studentid>

A:

0x20

B:

lea

C:

0x28

D:

0x28

E:

0x18

(3 points) How to reorder fields in the struct to be more space efficient? Explain your answer.

Each char in netid needs to be 1-byte aligned. sid needs to be 4-byte aligned, name and gpa
need to be 8-byte aligned on a 64-bit system. To minimize padding due to alignment

requirements, the struct can be reordered as “netid; sid; name; gpa;”. This way, no

padding exists between variables or structs in an array, saving 8 bytes of space per struct.

8

Problem 5: Assembly Programming II (6 points + 2 points extra credit)

The assembly code of a function is shown below, along with the relevant part of the memory. For

all questions in this part, assume %rdi = 0x7ffffffee3f0 at the beginning of the code.

The jns label is a jump instruction that jumps to label if and only if the sign bit is set to 0.

The same assembly programming conventions in the previous problem still apply.

Assembly Code Data (memory position: 8-byte value)

.L2:
testq %rdi, %rdi
je .L6
cmpq %rsi, (%rdi)
jns .L4
movq 0x10(%rdi),

%rdi
jmp .L2

.L4:
je .L7
movq 0x8(%rdi), %rdi
jmp .L2

.L6:
xorl %eax, %eax
ret

.L7:
movl $0x1, %eax
ret

0x7ffffffee3f0: 0x000000000000000c
0x7ffffffee3f8: 0x00007ffffffee408
0x7ffffffee400: 0x0000000000000000
0x7ffffffee408: 0xfffffffffffffff9
0x7ffffffee410: 0x00007ffffffee438
0x7ffffffee418: 0x00007ffffffee420
0x7ffffffee420: 0x0000000000000000
0x7ffffffee428: 0x0000000000000000
0x7ffffffee430: 0x0000000000000000
0x7ffffffee438: 0xfffffffffffffff4
0x7ffffffee440: 0x0000000000000000
0x7ffffffee448: 0x00007ffffffee3f0

(2 points) When the function is called with argument %rsi = 0, does the program terminate?

If so, what is the value stored in %eax after the function returns?

Yes, it terminates. Register %eax will be set to 1.

(2 points) For what values of %rsi does this procedure run into an infinite loop? Include the

previous question’s %rsi, if you found the program not to terminate under that %rsi. Write all

%rsi values in decimal, and in increasing order.

-11, -10, -9, -8

9

(2 points) How would you fix all infinite loop cases by modifying exactly one 8-byte value in

memory (must be aligned)? You can modify that 8-byte data to whatever you want. The function

output should stay the same for %rsi values for which the function was working correctly. In

other words, for all %rsi, if the function returned before the modification, the function should

return the same value before and after the modification.

0x7ffffffee448 = 0x0

(2 points extra credit) What kind of data structure does this function most likely

manipulate? Be specific: answering “array” gets no points.

Binary Search Tree

10

Problem 6: ISA + Microarchitecture (12 points + 4 points extra credit)

Part a) (12 points)

Consider the following x86 assembly code fragment:

mov $0x02, %rax
nop
nop
.L1:
cmpq %rax, $0x01
jle .L2
sub $0x01, %rax
nop
nop
cmpq %rax, $0x01
jge .L1
.L2:
xchg %rdi, %rdi
add $0x99, %rsi
mov %rsi, %rax
ret

(3 points) How many cycles does it take to execute this code on a single-cycle, sequential

machine?

16

We will now execute the program on two CPUs that are pipelined differently. Assume that both

CPUs have a simple 1-bit branch predictor and that the branch predictor is initialized to predict

“taken”. The 1-bit branch predictor works by storing a single bit somewhere in the CPU. All the

jumps in the program (no matter where they occur) are predicted by this one single bit.

The first CPU has a 5-stage pipeline similar to the one discussed in class with (F)etch, (D)ecode,

(E)xecute, (M)emory, and (W)riteback stages. With this CPU, the jump outcome, i.e., whether

the jump will be taken or not, is not known until the jump instruction itself finishes the E stage.

The second CPU has a 3-stage pipeline with Fetch (F), Decode (D), and Memory/Execute (MX)

stages. With this CPU, the jump outcome is not known until the jump instruction completes the

D stage.

11

Hints:

● Recall how a 1-bit branch predictor works: it simply stores whether the last jump was

taken or not taken and uses that information to predict whether a future jump will be

taken or not taken (e.g., if the last jump was taken, we predict that a future jump will be

taken). It is updated as soon as we know if a jump will actually be taken or not.

● If a jump is mispredicted, the correct next instruction will enter Fetch in the cycle after

the jump outcome is known.

● A CPU, with branch prediction, will always fetch the next instruction (that the CPU

predicts to be the correct next instruction) the cycle after it fetches the jump instruction.

(3 points) During the execution of the code fragment, how many instructions get fetched as a

result of a misprediction for the 5-stage pipeline? How many get fetched as a result of

misprediction for the 3-stage pipeline?

5-stage: 4, 3-stage: 2

(3 points) How many cycles does each CPU lose/waste every time it mispredicts?

5-stage: 2, 3-stage: 1

(3 points) Assume the first CPU is running at 1GHz (cycle time 1 ns) and the second CPU is

running at 600MHz (cycle time 1.6666... ns). Which CPU executes the code fragment faster (in

less time, from fetching the first instruction to finishing the last instruction)? Explain.

5-stage is faster. 5 stage takes 24 cycles = 24 ns, 3 stage takes 20 cycles = 33 ns.

12

Part b) (4 points extra credit)

Consider a 3-stage pipeline with Fetch (F), Decode (D), and Memory/Execute (MX) stages. The

diagram is given below.

The three stages take 100 ps, 82.5 ps, and 476 ps, respectively. The fastest clock frequency this

pipeline is capable of is 2.0 GHz. How long must it take to latch data into each of the 3

intermediate pipeline registers? Answer in picoseconds. A picosecond (ps) is 10
-12

second.

24 ps

13

