
Final Exam

CSC 252

4 May 2022

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Nisarg Ujjainkar, Abhishek Tyag, Kalen Frieberg, Gunnar Hammonds, Mandar Juvekar,

Zihao Lin, Vladimir Maksimovski, Yiyao (Jack) Yu

Name: ____________________________________

Problem 0 (3 points):

Problem 1 (12 points):

Problem 2 (18 points):

Problem 3 (25 points):

Problem 4 (20 points):

Problem 5 (26 points)

Problem 6 (26 points):

Total (130 points):

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 180 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

1

Problem 0: Warm-up (3 Points)

Do you think 252 could be taught in high school?

Problem 1: Miscellaneous (12 points)

Part a) (3 points)Write down the sum of 328 and 0x32 in base 2.

01001100

Part b) (3 points) Generally, the access time of a direct-mapped cache is ___ than that of a

fully associative cache that is the same total size. Answer with <, >, =, <=, or >=.

<=

Part c) (3 points) (True or False) Virtual memory has no size limitation.

False

Part d) (3 points) Consider the following C struct Person:

struct Person{
long id;
float age;
float weight;
float height;
char name[20];
char sex[7];
struct Person * nextPerson;

};

What’s the size of the struct Person?

56 Bytes

2

Problem 2: ISA (18 points)

A stack-based ISA is designed. The ISA uses a hardware stack, and instructions in this ISA

manipulate this stack. Each entry on the stack is one byte long, and the memory is

byte-addressable. All instructions are 8-bit long, and are classified into two categories.

R Category

Binary encoding:

OpCode<7-5 bits> 00000<4-0 bits>

Instruction list:

Instruction OpCode Role

pop 001 Remove the item at the top of the stack.

halt 001 Halt the processor.

I Category

Binary encoding:

OpCode<7-5 bits> Immediate value in 2’s component<4-0 bits>

Instruction list:

Instruction OpCode Role

pushi 000 Push sign-extended immediate value on the stack.

load 101 Let the top entry of the stack be A.

Compute Address = A + sign-extended immediate value;
Pop A from the stack;

Use Address to load a byte from the main memory and push

the byte on the stack.

store 100 Let the top entry of the stack be A, and the second entry of the

stack be B.

Compute Address = A + sign-extended immediate value;
Pop A from the stack;

Store B at the memory location Address;
Pop B from the stack.

3

loadd 110 Address = sign-extended immediate value. Load a byte from
the memory using Address and push the byte on the stack.

Part a) (12 points) Encode the following instructions in binary.

(4 points) store -8

10011000

(4 points) pushi 7

00000111

(4 points) halt

00100000

Part b) (6 points) You want to implement a function that pops the top value from the stack

and then pushes it back on the stack twice. Memory location at address 0 is reserved for this

instruction to use temporarily. Write an assembly program using the existing instructions to

implement this function.

pushi 0
store 0
loadd 0
loadd 0

4

Problem 3: Floating-Point Arithmetic (25 points)

Suppose that the IEEE decided to add a new n-bit floating-point standard, with its main

characteristics consistent with the other IEEE standards. This n-bit standard can precisely

represent the value , but cannot precisely represent 11 . The smallest positive6 3
16

7
16

normalized value that can be represented in this standard is .2−30

Part a) (3 points) Convert to Binary Normalized Form6 3
16

1. 100011 * 22

Part b) (3 points) How many of the n bits are fraction bits?

6

Part c) (3 points)What’s the bias of this standard?

31

Part d) (3 points) How many of the n bits are exponent bits?

6

Part e) (3 points)What is n?

13

Part f) (10 points) Suppose that using this new IEEE standard you perform two separate

calculations, assume nearest-even rounding is used:

1. (256 + 2 1
4) − 256

2. (256 − 256) + 2 1
4

What would be the result of these calculations? Do they both result in equivalent mathematically

precise answers? Show your math to earn partial credit.

5

1.00000000 * 2
8
+

1.001 * 2
1
=

1.00000000 * 2
8
+

0.0000001001 * 2
8 =

1.000000 * 2
8
: Mantissa can only be 6 bits long, round using nearest even

The first calculation’s result would be the imprecise value 0, the second calculations result

would be the precise value .2 1
4

This is because when performing the operation , the 6 fraction bits used in the(2 1
4 + 256)

standard don’t allow for enough precision to properly represent the exact value , so this258 1
4

operation will resolve to the imprecise value This is not an issue in the second calculation256.

as resolves to which can be added to without a loss of precision.(256 − 256) 0 2 1
4

6

Problem 4: Cache (20 points)

For all the questions in this problem, assume that we are using a 12-bit machine with a

byte-addressable memory and a direct-mapped cache. The cache can hold up to 16 cache lines.

Part a) (3 points)How many bits do you need for the set index?

4

Part b) (17 points) The following sequence of 9 memory accesses generates the hits/misses

shown. Some miss/hit entries are intentionally left blank. The cache is initially empty. Note that

the addresses are written in binary with spaces added between each 4 bits for readability. These

are not necessarily the tag/index/offset boundaries.

Address Hit/Miss

1 1101 1111 0000 Miss

2 0000 1101 1111 Miss

3 1101 0111 0101 Miss

4 0000 1101 1100 Hit

5 1101 1111 0011 Miss

6 1111 0111 0010 Miss

7 1101 1111 0000 Miss

8 0000 1101 1101 Hit

9 1111 0111 0100 Miss

(3 points)What is the number of tag bits?

5

(3 points)What is the number of offset bits?

3

7

(3 points)What is the size of each cache line (ignore the valid bit, dirty bit, and tag bits etc.)?

Show the formula you used to calculate this, and the value you get from it.

size of cache line = associativity * block size = 1 * 2^3 Bytes = 8 Bytes

(8 points) Fill the miss/hit for each of the blank entries.

8

Problem 5: Assembly Programming (26 points)

Conventions:

1. For this section, the assembly shown uses the AT&T/GAS syntax opcode src, dst
for instructions with two arguments where src is the source argument and dst is the
destination argument. For example, this means that mov a, bmoves the value a into b.

2. All C code is compiled on a 64-bit machine, where arrays grow toward higher

addresses.

3. For functions that take an argument, the argument is stored in %rdi at the time the
function is called. The return value of this function is stored in %rax at the time the
function returns.

Consider the assembly of a C function void foobar(int *x) which takes a single int
pointer parameter x.

0000000000001159 <foobar>:
1159: mov (%rdi),%eax
115b: inc %eax
115d: mov %eax,(%rdi)
115f: lea 0x2ecf,%rdi
1166: cmp $0x1,%eax
1169: je 1177 <foobar+0x1e>
116b: cmp $0x2,%eax
116e: jne 117c <foobar+0x23>
1170: lea 0x2eb4,%rdi
1177: call 1030 <puts@plt>
117c: ret

The addresses 0x2ecf and 0x2eb4 contain the beginning of character strings “foo” and
“bar” respectively. puts() is a standard C function that prints a character string given the
string start address as a parameter.

Part a) (9 points)

(3 points)When the initial value of *x is 0, what is printed by the program?

foo

(3 points)When the initial value of *x is 1, what is printed by the program?

9

bar

(3 points) The call on line 1177 is replaced with a jmp. Would this program still run

correctly? Explain your answer.

Yes. foobar() immediately returns after calling put() and does not put anything on its stack

frame. Using jmp makes puts() return from foobar()’s stack frame cleanly.

Part b) (17 points)

Assuming that there are two threads, each of which executes the same foobar() function with
the same exact parameter x. *x is initially set to 0. For the sake of this problem, assume that the
instructions inside the puts() function are always executed as an atomic unit (they are either
executed together without interruption or not executed at all).

(4 points)What are all the possible values of *x after both threads finish execution of
foobar()?

1 or 2

(4 points)What are all the possible strings printed by this multi-threaded program?

foobar, barfoo, foofoo

10

(3 points) Suppose the first three instructions (1159 to 115d) could be replaced with a single
atomic instruction called csc252. Would this guarantee that the program always ends with x
containing the value 2? Show you work to earn partial credit.

x will always be 2 in the end. It is impossible for both threads to write back 1 to *x.

(3 points)Would this guarantee that the program always prints the same string no matter how

many times you run it? Show you work to earn partial credit.

The program output can be either “foobar” or “barfoo” since the puts() can still be executed

in any order.

(3 points) Assuming that the two threads execute on two different processors, each with a

separate cache. What is something that the processor designers have to pay attention to in order

to correctly implement the csc252 instruction?

The csc252 instruction must ensure changes made to *x that are stored in cache must also be

visible in memory (cache coherence).

11

Problem 6: Virtual Memory (26 points)

Assume a virtual memory system that has the following characteristics:

1. The virtual address space is 32 KB and is byte addressable

2. Physical memory size is 8 KB and is byte addressable

3. Page size is 128 Bytes

4. One level page table, where each page table entry contains a valid bit, a dirty bit, and the

physical page number

5. PTBR is 0x3ADC

6. There is a data TLB that stores only the last page table entry

The format of a PTE is as shown below. MSB is the valid bit followed by the dirty bit. Last few

bits are the physical page number (PPN).

valid<1 bit> dirty<1 bit> PPN<n bits>

Part a) (3 points)What are the number of physical and virtual pages?

8KB/128B = 64 = 2^6

32KB/128B = 256 = 2^8

Part b) (3 points)What is the total size of the page table?

256 * (6+1+1) bits = 256 B

Consider the following C program:

void fibbo(int a[64]) {
a[0] = 0
a[1] = 1
for (int i=2; i < 64; i++) {

a[i] = a[i-2] + a[i-1];
}

}

Suppose that the virtual address of the array ‘a’ is 0x0400. Assume the data TLB is empty when
the code starts execution. The table below shows a part of the main memory before the code

executes.

12

Address Data

3ADC B8

3ADD 3A

3ADE CD

3ADF 78

3AE4 F9

3CDC B6

3DDC 4F

3EDC F0

Part c) (4 points) How many pages does array ‘a’ occupy?

2

Part d) (4 points) To read a[1], what virtual page number(s) is(are) accessed?

0x8

Part e) (8 points)What physical memory addresses are accessed when reading a[1]?

First physical memory access is for the PTE. The address is PTBR + VPN = 0x3AE4

Then we access the actual data.

The PTE (at 0x3AE4) has the data 0xF9, i.e., 1111 1001. So the physical page number is the last

6 bits, which are 111001. The page offset of the virtual address at 0x404 is 0000100, so the

two concatenated gives us the physical address 1110010000100, which is 0x1C84. Since a[1]

takes 4 bytes, accessing the data will reference four physical addresses: 0x1C84, 0x1C85,

0x1C86, 0x1C87.

Part f) (4 points) How many data TLB misses will occur in the execution of the program?

Assume the access order of the line “a[i] = a[i-2] + a[i-1];” is a[i-2], a[i-1],
a[i] with no other accesses in between.

There are two possible assumptions one could make about the machine.

1. The CPU register file can store 2 or more 32 bit integers. In this case the answer would be 2.

A[0] -> 1 miss

13

A[32] = A[31]+A[30] -> 1 miss to access A[32]

2. The CPU register file can store only one 32 bit integer. In this case, there will be one

memory access per iteration of the loop. The correct answer with this assumption would be 4.

A[0] -> 1 miss

A[32] = A[31]+A[30] -> 1 miss to access A[32]

A[33] = a[32]+A[31] -> 2 misses

The last instruction will want to access A[31], which is not in the register. Accessing

A[31] will thus result in a TLB miss because it resides in the first page. This memory access

results in the previous PTE being evicted from the TLB, which now contains the PTE for the

first page. Accessing A[33] again results in a TLB miss because it resides in the second page.

14

