
CSC 252: Computer Organization 
           Spring 2025: Lecture 12 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester



Carnegie Mellon

!2

Announcement

• Programming assignment 3 out.

• See blackboard announcement for PA 1 grades

• Open-book mid-term on Friday at this time


• Anything on paper is fair, nothing electronically. 
• “I don’t know” is given 15% partial credit


– You need to decide if guessing is worthwhile 
– Saves grading time 
– You have to write “I don’t know” and cross out /erase anything 

else to get credit: A blank answer doesn’t count



Carnegie Mellon

Move Instructions

�3

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

irmovq $0xabcd, %rdx 

mrmovq -12(%rbp),%rcx

rmmovq %rsi,0x41c(%rsp)

The instruction length limits the 
immediate value and displacement.



Carnegie Mellon

Move Instruction Examples

�4

irmovq $0xabcd, %rdx 

30 82 cd ab 00 00 00 00 00 00

Y86-64

Encoding: 

rrmovq %rsp, %rbx 

20 43

mrmovq -12(%rbp),%rcx

50 15 f4 ff ff ff ff ff ff ff

rmmovq %rsi,0x41c(%rsp)

40 64 1c 04 00 00 00 00 00 00

Encoding: 

Encoding: 

Encoding: 



Carnegie Mellon

Jump/Call Instructions

�5

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest (essentially the target address)

Dest (essentially the start address of the callee)

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jle .L4

The assembler would assume a start 
address of the program, and then calculates 
the address of each instruction.

call foo



Carnegie Mellon

How Does An Assembler Work?

!6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 00 01 00 00 00 00 00 00

0x200

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB

Dest



Carnegie Mellon

How Does An Assembler Work?
• The assembler is a program that translates assembly code to binary code

• The OS tells the assembler the start address of the code (sort of…)

• Translate the assembly program line by line

• Need to build a “label map” that maps each label to its address

!7

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 00 01 00 00 00 00 00 00

0x200

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00



Carnegie Mellon

Jump Instructions

�8

jmp Dest 7 0

Jump Unconditionally
Dest

jle Dest 7 1

Jump When Less or Equal
Dest

jl Dest 7 2

Jump When Less
Dest

je Dest 7 3

Jump When Equal
Dest

jne Dest 7 4

Jump When Not Equal
Dest

jge Dest 7 5

Jump When Greater or Equal
Dest

jg Dest 7 6

Jump When Greater
Dest



Carnegie Mellon

Subroutine Call and Return

• Push address of next instruction onto stack 
• Start executing instructions at Dest 
• Like x86-64 

• Pop value from stack 
• Use as address for next instruction 
• Like x86-64

�9

call Dest 8 0 Dest

ret 9 0



Carnegie Mellon

One More Complication…

�10

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What 
if the jump target has a very long address that can’t fit in 8 bytes?

• Or if we can use only say 4 bytes for the target address?


• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short 

addr.) 
• Another alternative: encode the relative address, not the absolute 

address

• E.g., encode (.L4 - current address) in Dest



Carnegie Mellon

Using Relative Addresses for Jumps
• What if the ISA encoding uses relative address for jump and call?

• If we use relative address, the exact start address of the code 

doesn’t matter. Why?

• This code is called Position-Independent Code (PIC)

!11

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

7B 00 00 00 00 00 00 000x185

0x180

relative addr: 
-0x80

0x7B

00 00 00 11 11 11 11 11



Carnegie Mellon

Miscellaneous Instructions

• Don’t do anything 

• Stop executing instructions 
• Usually can’t be executed in the user mode, only by the OS 
• Encoding ensures that program hitting memory initialized to zero will halt

�12

nop 1 0

halt 0 0



Carnegie Mellon

�13

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where 
different instructions have different lengths.


• There are fixed length ISAs: all instructions have the same length

• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word 

(VLIW) ISAs have instructions that are hundreds of bytes long. 
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions 

(e..g, ARM Thumb-extension). 

• Advantages of variable length ISAs

• More compact. Some instructions do not need that many bits. (Actually what’s 

the optimal way of encoding instructions in a variable length ISA?) 
• Can have arbitrary number of instructions: easy to add new inst. 

•What is the down side?

• Fetch and decode are harder to implement. More on this later. 

• A good writeup showing some of the complexity involved: 
http://www.c-jump.com/CIS77/CPU/x86/lecture.html

http://www.c-jump.com/CIS77/CPU/x86/lecture.html


Carnegie Mellon

!14

So far in 252…

C Program

Assembly 
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture



Carnegie Mellon

!15

Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data



Carnegie Mellon

Overview of Circuit-Level Design
• Fundamental Hardware Requirements


• Communication: How to get values from one place to another. Mainly 
three electrical wires. 

• Computation: transistors. Combinational logic. 
• Storage: transistors. Sequential logic. 

•Circuit design is often abstracted as logic design

�16

Voltage

Time

0 1 0



Carnegie Mellon

!17

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data



Carnegie Mellon

!18

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

PMOS

NMOS



Carnegie Mellon

!19

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.



Carnegie Mellon

!20

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)



Carnegie Mellon

Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor combinations)

�21

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && bRising Delay

Falling Delay



Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs 
• Primary outputs become (after some delay) Boolean functions of 

primary inputs

�22

Primary
Inputs

Primary
Outputs



Carnegie Mellon

Bit Equality

�23

Bit equal
a

b

eq



Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7 
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis

�24

Bit equal
a

b

eq1

4.3

4.7

Critical Path



Carnegie Mellon

!25

So far in 252…

C Program

Assembly 
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture



Carnegie Mellon

!26

Today: Circuits Basics
• Basics

• Circuits for computations

• Circuits for storing data



Carnegie Mellon

Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7 
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis

�27

Bit equal
a

b

eq1

4.3

4.7

Critical Path



Carnegie Mellon

Glitch/Hazard

�28

A

B

C

• A glitch is an unnecessary 
signal transition without 
functionality.


• Why is it bad? When 
transistors switch they 
consume power, but the 
power consumed during a 
glitch is a waste.


• Without care, glitch power 
dissipation is 20%-70% of 
total power dissipation.F

F



Carnegie Mellon

64-bit Equality

�29

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq



Carnegie Mellon

Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

�30

bool out = (s&&a)||(!s&&b)

s

b

a

out

Bit MUX

s

B

A
OutMUX



Carnegie Mellon

4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

�31

s[0]

A

B

Bit MUX

s[0]

C

D

Bit MUX out

s[1] Bit MUX

What’s the latency of 
this implementation?

1

4.7
4.3



Carnegie Mellon

Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of 

outputs of a gate (fan-out) will affect the gate delay.

• Think of logic gates as LEGO chips, using which you generate 

the gate level circuit design for complex functionalities.

• A standard cell library is a collection of well defined and 

appropriately characterized logic gates (delay, operating 
voltage, etc.) that can be used to implement a digital design.


• The logic synthesis tool will automatically generate the “best” 
gate-level implementation of a piece of logic.


• Take a Logic Design or Very Large Scale Integrated-Circuit 
(VLSI) course if you want to know more about circuit design.


• Logic design uses the gate-level abstractions 
• VLSI tells you how the gates are implemented at transistor-level

!32



Carnegie Mellon

!33

Recall: Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)

        | (A & ~B & ~Cin)

        | (A &  B &  Cin)

Cou = (~A & B & Cin)

        | (A & ~B & Cin)

        | (A & B & ~Cin)
        | (A &  B &  Cin)



Carnegie Mellon

!34

Recall: 1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

        | (A & ~B & Cin)
        | (A & B & ~Cin)

        | (A &  B &  Cin)

AND Gates

OR Gates



Carnegie Mellon

!35

Recall: Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width 

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously



Carnegie Mellon

OF
ZF
CF

Arithmetic Logic Unit

�36

A
L
U

Y

X

Result  of some computation 
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:


• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11


• How can this ALU be implemented?



Carnegie Mellon

Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results

�37

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out



Carnegie Mellon

!38

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data



Carnegie Mellon

!39

The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter 

• Every state is essentially some bits that are stored/loaded.

• Think of the program execution as an FSM.

• The hardware must provide mechanisms to load and store bits.

• There are many different ways to store bits. They have trade-offs.



Carnegie Mellon

Build a 1-Bit Storage

�40

Q

D

C

Some Logic

•What we would like:

• D is the data we want to store (0 or 1) 
• C is the control signal 

• When C is 1, Q becomes D (i.e., storing the data) 
• When C is 0, Q doesn’t change with D (data stored)



Carnegie Mellon

Bitstable Element

�41

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.



Carnegie Mellon

!q q

q !q

Storing and Accessing 1 Bit

�42

R-S Latch

Setting Q+ to 0
1

0

1 0

0 1

Setting Q+ to 1
0

1

0 1

1 0

Q+ value unchanged
i.e., stored!

0

0

Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Q+

Q–

R

S

OR

If R and S are different, Q+ is the same as S



Carnegie Mellon

Building on top of R-S Latch

�43

D Latch

Q+

Q–

R

S

D

C

Data

Control

Storing Data (Latching)

1

d !d !d !d d

d d !d

Holding Data

0

d !d q

!q

!q

q0

0

Q+ will continuously 
change as d changes Q+ doesn’t change with d

If R and S are different, Q+ is the same as S


