CSC 252: Computer Organization
Spring 2025: Lecture 12

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Programming assignment 3 out.
* See blackboard announcement for PA 1 grades
* Open-book mid-term on Friday at this time
e Anything on paper is fair, nothing electronically.
e “I don’t know” is given 15% partial credit
— You need to decide if guessing is worthwhile
— Saves grading time

— You have to write “I don’t know” and cross out /erase anything
else to get credit: A blank answer doesn’t count

Move Instructions

3 - 5 o L 8 9

The instruction length limits the
Immediate value and displacement.

irmovg $0xabcd, %$rdx

rmmovqg %rsi,0x4lc(%rsp)

mrmovq -12 (%$rbp) ,$rcx

Byte 0 1 2
halt 010

nop 110
cmovXX rA, rB 2 | fn|rA | rB
irmovg V, rB 310]F |(rB
rmmovqg rA, D (rB) 4 |10 |rA|rB
mrmovg D (rB), rA 510 |rA|rB
Opg rA, B 6 [fn|rA|rB
jXX Dest 7 | fn

call Dest 810

ret 910

pushg rA A|lOJrA|F
popqg rA B|OJ|rA|F

Move Instruction Examples

Y86-64
irmovqg $0xabcd, $%$rdx

Encoding: 30 82 cd ab 00 00 00 00 00 00

rrmovq 3%rsp, 5%rbx

Encoding: 20 43

mrmovqg -12 (%rbp) ,%$rcx

Encoding: 50 15 f4 ff ff ff ff ff ff ff

rmmovqg %rsi,Ox4lc(%rsp)

Encoding: 40 64 1c 04 00 00 00 00 00 00

Jump/Call Instructions

Byte

halt

nop

cmovXX rA, rB
irmovg V, rB
rmmovqg rA, D (rB)
mrmovg D (rB), rA

Opg rA, B

jXX Dest

call Dest

ret
pushqg rA

popg rA

0

0

1

1

2

3 - 5 o 7 8 9

The assembler would assume a start
address of the program, and then calculates
the address of each instruction.

2 | In|rA|rB

310]F|rB \Y

410 |rA|rB D

510 |rA|rB D

6 |fn]rA B

7 | fn jle .L4 jlly the target address)
810 Dest|call foo p start address of the callee)
910

A|O|rA|F

B|O|rA|F

How Does An Assembler Work?

rmmovg rA, D (rB) 410 |rA|rB D
OPqg rA, B 6 |fn|rA|rB

jxXx Dest 7 | fn Dest
call Dest 810 Dest

0x100 <foo> | rmmovqg %rsi,Ox4lc(%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret 90
Ox100 + the
lengths of all | addg %rax, %rsi 60 06
instructions
in-between | call <foo> 80 00 01 00 00 00 00 00 00
jmp .LO 70 00 02 00 00 00 00 00 00
v

0x200 .LO irmovqg $0xabecd, %$rdx 30 £2 cd ab 00 00 00 00 00 0O

How Does An Assembler Work?

* The assembler is a program that translates assembly code to binary code
* The OS tells the assembler the start address of the code (sort of...)

* Translate the assembly program line by line

e Need to build a “label map” that maps each label to its address

0x100 <foo> | rmmovqg %rsi,Ox4lc(%rsp) 40 64 1c 04 00 00 00 00 00 0O

ret 90
Ox100 + the
lengths of all | addg %rax, %rsi 60 06
instructions
in-between | call <foo> 80 00 01 00 00 00 00 00 00
jmp .LO 70 00 02 00 00 00 00 00 00
v

0x200 .LO irmovqg $0xabecd, %$rdx 30 £2 cd ab 00 00 00 00 00 0O

Jump Instructions

Jump Unconditionally

jmp Dest |7 |0 Dest
Jump When Less or Equal

jleDest |7 |1 Dest
Jump When Less

j1 Dest 7|2 Dest
Jump When Equal

je Dest 7|3 Dest
Jump When Not Equal

jne Dest |7 | 4 Dest
Jump When Greater or Equal

jgeDest |7 |5 Dest
Jump When Greater

jg Dest 7|6 Dest

Subroutine Call and Return

call Dest

Dest

e Push address of next instruction onto stack

 Start executing instructions at Dest
 Like x86-64

ret

e Pop value from stack
» Use as address for next instruction
e | ike x86-64

One More Complication...

Byte 0 1 2 3 4 5 6 7 8 9
jxX Dest 7 | fn Dest (essentially the target address) jle .14
call Dest 8|0 Dest (essentially the start address of the callee) call foo

* The instruction length limits how far you can jump/call functions. What
if the jump target has a very long address that can’t fit in 8 bytes?

e Or if we can use only say 4 bytes for the target address?
e One alternative: use a super long instruction encoding format.

* Simple to encode, but space inefficient (waste bits for jumps to short
addr.)

e Another alternative: encode the relative address, not the absolute
address

e E.g., encode (.L4 - current address) in Dest

10

Using Relative Addresses for Jumps

e What if the ISA encoding uses relative address for jump and call?

e |[f we use relative address, the exact start address of the code
doesn’t matter. Why?

e This code is called Position-Independent Code (PIC)

0x100 <foo>
A

-0x80

v
0x180

0x185

I Ox7B
0x200 .LO

rmmovqg %rsi,0x4lc (%rsp)

relative addr:

ret

addq %rax,%rsi

call <foo>

jmp .LO

irmovqg $0xabcd,

64 1c 04 00 00 00 00 00 OO

06

00 00 00 11 11 11 11 11

7B 00 00 00 00 0O OO OO

f2 cd ab 00 00 00 00 0O OO

Miscellaneous Instructions

nop 10

« Don’t do anything

halt 0|0

e Stop executing instructions
« Usually can’t be executed in the user mode, only by the OS
« Encoding ensures that program hitting memory initialized to zero will halt

12

Variable Length Instructions

e X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.
* There are fixed length ISAs: all instructions have the same length

* ARM'’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word
(VLIW) ISAs have instructions that are hundreds of bytes long.

* Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions
(e..g, ARM Thumb-extension).

e Advantages of variable length ISAs

* More compact. Some instructions do not need that many bits. (Actually what'’s
the optimal way of encoding instructions in a variable length ISA?)

* Can have arbitrary number of instructions: easy to add new inst.

* What is the down side?
* Fetch and decode are harder to implement. More on this later.

e A good writeup showing some of the complexity involved:

13

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

So far in 252...

C Program

i

Assembly
Program

i

Instruction Set Architecture

Processor

Microarchitecture

Circuits

14

Today: Circuits Basics

e Basics

Overview of Circuit-Level Design

 Fundamental Hardware Requirements

« Communication: How to get values from one place to another. Mainly
three electrical wires.

* Computation: transistors. Combinational logic.
* Storage: transistors. Sequential logic.
e Circuit design is often abstracted as logic design

—o0—| —1—] }— 00—

Voltage

Time

16

Today: Circuits Basics

e Circuits for computations

17

Inverter (NOT Gate)

— #1.2V

PMOS

NMOS

T— +1.2V

—':: I P-type

INn=0— ¢+— Out=1

18

NOR Gate (NOT + OR)

v A4

Note: Serial structure on top, parallel on bottom.

A=0 e
B=1-1+——_:P
€=0
— v — N
R

A B C

0 0f 1

0o 1| o

1 0| 0

1 1] 0

10

Basic Logic Gates

A A
Bj>AIB NIl (A| B)

OR NOR

g:}A&B g:}—~(A&B)

AND NAND

20

Computing with Logic Gates

And Or Not
a — a
T Deow 0] D ot aPooou
out=a s&s& b out=a || b out='a

e Qutputs are Boolean functions of inputs
* Respond continuously to changes in inputs with some small delay
* Different gates have different delays (b/c different transistor combinations)

as&ssh
... ‘/

Rising Delay

Voltage

Time Falling Delay

21

Combinational Circuits

1

_ 1 I -
Primary — D :J_ Primary
Inputs , Outputs
—1 D .

e A Network of Logic Gates
» Continuously responds to changes on primary inputs

* Primary outputs become (after some delay) Boolean functions of
primary inputs

22

Bit Equality

Bit equal

) -

-
-

23

Delay of Bit Equal Circuit

Bit equal

T -

4.3
b = & Critical Path

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis

24

So far in 252...

C Program

i

Assembly
Program

i

Instruction Set Architecture

Processor

Microarchitecture

Circuits

25

Today: Circuits Basics

e Basics

Delay of Bit Equal Circuit

Bit equal

T -

4.3
b = & Critical Path

« What’s the delay of this bit equal circuit?

o Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3,
and 2-input OR takes 4.7

» The delay of a circuit is determined by its “critical path”

* The path between an input and the output that the maximum delay
« Estimating the critical path delay is called static timing analysis

27

Glitch/Hazard

0.0 ns

10.0 ns

e A glitch is an unnecessary

signal transition without
functionality.

« Why is it bad? When

m O W >

transistors switch they
consume power, but the
power consumed during a
glitch is a waste.

« Without care, glitch power
dissipation is 20%-70% of
F total power dissipation.

28

64-bit Equality

Doz ™ €063
Bit equal B — Eq
Ags _ e
b eq —_—
” Bit equal = A
g2 ™|
[[
® ® >— Eq
[[
b, edq;
Bit equal
a;
by, — €Jp
Bit equal
do

e Control signal s
e Data signals A and B
e Output A when s=1, B when s=0

bool out = (s&&a) || (!'s&é&b)

MUX Out

Bit MUX

— out

30

4-Input Multiplexor

e Control signal s; Data signals A, B, C, and D
e Output: A when s =00, Bwhens=01,Cwhens =10, D whens =11

s[0] ! V{ Bit MUX
A s[1] . :

4.7 KZ Bit MUX
B 4.3

s[0] ! K{ Bit MUX
What’s the latency of

D this implementation?

—

— out

31

Logic Design and VLSI

* The number of inputs of a gate (fan-in) and the number of
outputs of a gate (fan-out) will affect the gate delay.

e Think of logic gates as LEGO chips, using which you generate
the gate level circuit design for complex functionalities.

* A standard cell library is a collection of well defined and
appropriately characterized logic gates (delay, operating
voltage, etc.) that can be used to implement a digital design.

* The logic synthesis tool will automatically generate the “best”
gate-level implementation of a piece of logic.

e Take a Logic Design or Very Large Scale Integrated-Circuit
(VLSI) course if you want to know more about circuit design.

* Logic design uses the gate-level abstractions
* VLSI tells you how the gates are implemented at transistor-level

32

Recall: Full (1-bit) Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

S =(~A&~B &Ci)
| (~A & B & ~Cin)
| (A & ~B & ~Cin)

| (A& B & Cin)

Cou = (~A & B & Cin)
(A & ~B & Cin)
(A & B & ~Cip)
(A& B& Ci)

>
w
0

)]
@]

=)
c

O G T = T S G < Y)

- O =) O = O = 0O

O = T = T G - JE G G

_ S =S O =) 0 0 O]l

21

Recall: 1-bit Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out.

A

B

g

Cw=@A&B&Q@)

(A & ~B & Cin)

(A& B & ~Ci)
)

bﬁ@@

v

Ot

out

+—— (OR Gates

24

Recall: Four-bit Adder

* Ripple-carry Adder

e Simple, but performance linear to bit width
* Carry look-ahead adder (CLA)

* Generate all carriers simultaneously

A, B, A, B, A, B,
| | |
A B A B A B

Full ©C. Full & Full

Adder Adder Adder

C. S C.. S C. S

Arithmetic Logic Unit

Y —,
'E‘ _Result of some computation
U between X and Y

X — B i OF

....... .’ CF

e An ALU performs multiple kinds of computations.
* The actual computation depends on the selection signal s.
* Also sets the condition codes (status flags)
e For instance:
* X+ Y whens==00
* X-Y when s == 01
e X& Y whens==10
* XAY when s == 11
e How can this ALU be implemented?

36

Arithmetic Logic Unit

* Implement 4 different circuits, one for each operation.
* Then use a MUX to select the results

Y A Y A Y A Y A
X —™B ~i. OF X —™B ~#. OF X —™B A.. OF X —™B <. OF
------- ZF LI ZF LI ZF LI ZF
.......... CF e O e o)
X+Y X-Y X&Y XY

Today: Circuits Basics

* Circuits for storing data

38

The Need for Storing Bits

e Assembly programs set architecture (processor) states.
* Register File
e Status Flags
* Memory
* Program Counter
e Every state is essentially some bits that are stored/loaded.
* Think of the program execution as an FSM.
* The hardware must provide mechanisms to load and store bits.
* There are many different ways to store bits. They have trade-offs.

39

Build a 1-Bit Storage

D

Some Logic

* What we would like:
e D is the data we want to store (O or 1)
e C is the control signal
 When Cis 1, Q becomes D (i.e., storing the data)
« When C is 0, Q doesn’t change with D (data stored)

40

Bitstable Element

Vi,,=V, Bistable Element

Q+ continuously outputs q.

41

Storing and Accessing 1 Bit

Bistable Element R-S Latch
q
Q+ R OR Q+
|
d A_ _
Q S Q
qg =0or1

Q+ value unchanged
i.e., stored!

Setting Q+ to 1 Setting Q+ to 0
0 0

R%i . |
1 0

S Q- S

If R and S are different, Q+ is the same as S

42

Building on top of R-S Latch

D
Data 40—[>O— R
— Q+
D Latch
Q_
Control C — S

If R and S are different, Q+ is the same as S

Storing Data (Latching) Holding Data
d o 1d 1d 'd d d
| Q+
1 Q- 0

d d 'd

Q+ will continuously

change as d changes Q+ doesn’t change with d

43

