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Executing a JLE instruction

- Logic 1: if (sO == 6) select = s1;
- Logic 2: if (sO == 6) Enable = 1; else Enable = 0;
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Executing a JLE instruction
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Executing a JLE instruction

- Logic 4?7 Does JLE write flags?
- Need another piece of logic.

* Logic 5: if (sO ==
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Microarchitecture (So far)
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Combinational Logic

Logic for generating
ALU select signal

Logic for generating
new flag value

Logic for generating
new PC value

Logic for deciding all

the enable signal values

Read current_states;
next_states = f(current_states);

When clock rises, current_states = next_states;
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Executing a MOV instruction

- How do we modify the hardware to execute a move instruction?

rmmovqg rA, D (rB) 410 |rA|rB D

move rA to the memory address rB + D

rmmovq %$rsi,Ox4lc(%rsp) (40 64 1c 04 00 00 00 00 00 OO

Memory
‘ newData
Clock T l \k Logic 1
_ C Write # Select
opci Tnpc‘(so 4 Reg. ID A >A\
s1|0 Read Reg. Redist
Logic 3 D 1 —> egistier L T
T T 32 ° Read Reg. File A > Y Logic 4
ogic
4 D2 > v ]
s e :g l Logic 2 t ClookT > Flags
Enable Logic 5 EnableF | | Z |1 S || O




rmmovqg rA, D (rB)

move rA to the memory address rB + D

410 (]rA|rB

D

- Need new logic (Logic 6) to select the input to the ALU for Enable.
- How about other logics?

Memory

<& Data to write

K

Clock

C
orc] $ec /S0
v
Logic 3

-

Flags [s2...s9] §4
s5

l

- |~ O O |

o

< Enable Logic 6
<“— Address
newData I
Logic 1
4...519
— v (54 519y Select
Reg.ID — AU ERILS
Read Reg. _,/ Register X ﬁ 1
Dt File e U
Read Reg. g Logic 4
D 2 ' - v
t 1
Logic 2 Clock > Flags
Enable ___ | Logic5 [EM@Peh 1 [Z]|S]|©




How About Memory to Register MOV?

move data at memory address rB + D to rA

mrmovg D (rB),
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How About Memory to Register MOV?

move data at memory address rB + D to rA

mrmovg D (rB), rA 4 |0 |rA|rB D
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Microarchitecture (with MOV)
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Combinational Logic

Read current_states;
next_states = f(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the clock rises




Single-Cycle Microarchitecture
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Combinational Logic

Read current_states;
next_states = calculate_new_state(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the clock rises

Key principles:
States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)

New states are calculated by combination logic.
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Single-Cycle Microarchitecture: lllustration

Think of it as a state machine

| | o
Every cycle, one instruction gets | “Mooe - F— —
executed. At the end of the <
cycle, architecture states get 7S ) memory T
modified. CC
100 N
States (All updated as clock pore
rises) <}3 Register | 4 |
. ::> e Ko
m PC reg|S‘ter $rbx = 0x100
= Cond. Code register . AN %
= Data memory PC <

= Register file



Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

-

Combinational

logic

47

CC
100

“— Cycle1 —n— Cycle2 —

Cycle3 —n— Cycle4 —

I B e B L
) @ >\C3) @
0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
0x014: addg %rdx, $rbx # %rbx <-- 0x300 CC <-- 000

0x01f: rmmovqg %$rbx, 0 ($rdx)

# M[0x200] <-- 0x300

PC
0x014

Read Write
<I|j Data AU
£l> memory | N

Read Write

ports ports
<:3 Register
;> file N—

$rbx = 0x100

¢ state set according to second
irmovqg instruction

e combinational logic starting to
react to state changes

13



Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

-

o

Combinational

logic

47

CC
100

000

«—— Cycle1 —

I

«— Cycle2 —

«—— Cycle 3 m— Cycled4d —

[ —

\

A

@® ©) @
0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
0x00a: irmovg $0x200,%rdx # %rdx <-- 0x200
0x014: addg %rdx, $rbx # %rbx <-- 0x300 CC <-- 000
0x01f: rmmovqg %rbx, 0 (%$rdx) # M[0x200] <-- 0x300

~Aar

)

Read
ports

0x016

o

0x014

<

.- e state set according to second
Data P+ : : :
irmovqg Instruction
memory N 4
e combinational logic generates
| results for addq instruction
o

Register | , | sTrbx
e K | <
— 0x300

14



-

Combinational

logic

47

CC
000

PC
0x016

“— Cycle1 —n¢— Cycle2 —— Cycle3 — Cycle 4 —
Clock ' ' ' ' [
S NS ey I oy B
@ @ @
Cycle 1:| 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle2: | 0x00a: irmovg $0x200,%rdx # %rdx <-- 0x200
Cycle 3: | 0x014: addg %rdx, $rbx # $rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle5:| 0x01f: rmmovqg %$rbx, 0 (%$rdx) # M[0x200] <-- 0x300
Read Write '
<‘13 e state set according to addg
E instruction
£l> memory
e combinational logic starting
| to react to state changes
pors pors
<:3 Register | ,
ﬁ> file N—
$rbx = 0x300

15



«“— Cycle1 —n— C(Cycle2 —— Cycle3 —3— Cycle4
Clock _\__\_ '
_ N N
@® @ @
Cycle 1:| 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle2:| 0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
Cycle3:| 0x014: addg %rdx, $rbx # %$rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle5:| 0x01f: rmmovqg %$rbx, 0 (%$rdx) # M[0x200] <-- 0x300

Data
memory

Register
file

Srbx = 0x300

e state set according to addg
instruction

e combinational logic generates
results for je instruction

16



Performance Model

Execution time
of a program
(in seconds)

# of Dynamic Instructions CPI

X| # of cycles taken to execute an instruction (on average)

Clock Frequency

/| number of cycles per second (1/cycle time)




Improving Performance

Execution time
of a program
(in seconds)

# of Dynamic Instructions

X # of cycles taken to execute an instruction (on average)
/' number of cycles per second

1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

- 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

- 3. Reduce the CPI, i.e., execute more instructions in one cycle.
« We will talk about one technique that simultaneously achieves 2 & 3.
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Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

* The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

- How do execute multiple instructions in one cycle?
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A Motivating Example

300 ps 20 ps
Combinational z
logic
g
|
Clock

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
* Must have clock cycle time of at least 320 ps



Pipeline Diagrams

» Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1 320

OP2 320

OP3 . 320
Time

- 3 Instructions will take 960 ps to finish

- First cycle: Inst 1 takes 300 ps to compute new state,
20 ps to store the new states

+ Second cycle: Inst 2 starts; it takes 300 ps to
compute new states, 20 ps to store new states

- And so on...
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3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

- Divide combinational logic into 3 stages of 100 ps each

- Insert registers between stages to store intermediate data between
stages. These are call pipeline registers (ISA-invisible)

- Can begin a new instruction as soon as the previous one finishes
stage A and has stored the intermediate data.

- Begin new operation every 120 ps
- Cycle time can be reduced to 120 ps
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3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
3-Stage Pipelined
|
ori_ A | B | [C
OP2 A| B | C
OP3 A B
Time
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Comparison

« Time to finish 3 insts = 960 ps

Unpipelinea - Each inst.’s latency is 320 ps
OP1 320
OP2 320
OP3 Time 320
3-Stage Pipelined
« Time to finish 3 insets = 120 *
opiA 1 B 1 6 5 = 600 ps
OP2 A B C _
OP3 A B c - But each inst.’s latency
Time increases: 120 * 3 = 360 ps
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Benefits of Pipelining

« Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1
OP2
OP3

Time

1. Reduce the cycle time from 320 ps to 120 ps

2. CPIl reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

* Time to finish 3 insets = 120 *

opil A | B | C 5 — 600 pS
OP2 Al B | C |
oP A B C * But each inst.’s latency
3 . increases: 120 * 3 = 360 ps
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Pipeline Trade-offs

* Pros: Decrease the total execution time (Increase the “throughput’).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.
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Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5

Time
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Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
B | C Clock
A B C
A B C Throughput of this 3-stage
A B c processor is 1 instruction every
120 ps, or 8.3 Giga (billion)
A B Instructions per Second (GIPS).
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One Requirement of Pipelining

* The stages need to be using different hardware structures.

- That is, Stage A, Stage B, and Stage C need to exercise
different parts of the combination logic.

OP1| A B C
OP2 A B C
OP3 A B

Time

* Time to finish 3 insets = 120 *

5 =600 ps

« But each inst.’s latency

increases: 120 * 3 = 360 ps
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Clock

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
'Og\'c e logic e logic e
g B g C g

Clock
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Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
P
OP1 | A C
OP2 A B
OP3 A
Time
>
50ps 20 ps 150 ps 20 ps 100 ps
Cycle time: 170 ps
Delav: 51 Comb. R Comb. R Comb.
elay: 510 ps 'Og\'c e logic e logic
Thrupt: 5.9 GIPS g B g C

20 ps

®

Clock
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Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component
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Io'g\ic \ivg/hiig e logic e logic e
9“1 g B M g C g
¢ U
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What logic do you need there?

Hint: it needs to control the clock signals of the

two registers and the select signal of the MUX.
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Aside: Mitigating Unbalanced Pipeline

e Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.
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Another Way to Look At the Microarchitecture

Principles:

» Execute each instruction one at a time, one after another
» EXpress every instruction as series of simple steps

» Dedicated hardware structure for completing each step
 Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter
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newPC
PC

valE,valM

Write back

Memory

Addr, Data

Execute

aluA, aluB

valA,valB

D d
A B
ecoagae dstA, dstB e

file

icode ifun
rA ,rB
valC

Instruction PC

FetCh memory increment

Fetch

= Read instruction from instruction memory

Decode
= Read program registers

Execute
= Compute value or address

Memory
= Read or write data

Write Back
= Write program registers

PC
= Update program counter
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Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

ObPq rA, rB fn|rA|rB
OPqrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |[PC < valP Update PC
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Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10

<— R[rA

Decode valA < RIrAl

valB < R[rB]

valE <— valB + valC
Execute
Memory Mg[valE] <— valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC
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Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC < Cnd ? valC : valP

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

e Choose based on setting of condition codes and branch condition
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Pipeline Stages

Fetch

- Select current PC

- Read instruction

- Compute incremented PC
Decode

- Read program registers
Execute

- Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC
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