CSC 252: Computer Organization
Spring 2024: Lecture 14

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Executing a JLE instruction

- Logic 1: if (sO == 6) select = s1;
- Logic 2: if (sO == 6) Enable = 1; else Enable = 0;

Memory

K

Clock l
— PC

opcl Thrc /S0 7

Lthics/s-I 1

s2| 0

S3| 1

s4|2

S5 3

newData
—> Logic 1
¢ Select
Reg 1 Data»A\
Read Reg. _,/ Register 1
L
ID 1 .
Read Reg File AL » Y I logio
| ogic
D 2 ' - v
f f
Logic 2 Clock > Flags
Enable Z][S]1©

jleDest |7 |1 Dest

Executing a JLE instruction

. Loglc 3?? if (SO == 6) nPC = oPC + 2,
Memory
‘ newData -3
Clock T Logic 1
C ¢ Select
ol frosof7 fo9 1028, P
s1|1 Read Reg. Reaqi
i —> egister
Logic 3 32 0 ID 1 Igile Reg 2 Data b N
Read Reg. g Logic 4
T T 1 D 2 > v 1
Flags [s2...s9] S4 2 ? T
s5| 3 Logic 2 Clock > Flags
Enable Z||S||O

Executing a JLE instruction

- Logic 4?7 Does JLE write flags?
- Need another piece of logic.

* Logic 5: if (sO ==

Memory

K

Clock

C
orc] $ec /S0
v
Logic 3

-

Flags [s2...s9] §4
s5

l

W NN =0 | = (N

1D 1

ID 2

Read Reg. ,

) EnableF = 0; else if (sO == 6) EnableF = 1;

newData

Logic 2

—> Logic 1
¢ Select
Reg 1 Data»A\
Read Reg. _,/ Register L 1
File —|[Fe9278l jy ¥
/ Logic 4
™ Clook :
Clock > Flags

Enable

Logic 5

EnableF
nable ZllsS||lO

Microarchitecture (So far)

Clock l

! !

—> Register
PC Memory Igile
I
Cur. T 4 |
T Inst Rd/Wr g:;\{ Current
New : Reg. IDs | | valus VZﬁJgés
PC :
v ‘ Enalble? l

}

Flags

Z

S

O

7y

Enable?

New Flag
Values

Cur. Flag
Values

l

Combinational Logic

Logic for generating
ALU select signal

Logic for generating
new flag value

Logic for generating
new PC value

Logic for deciding all

the enable signal values

Read current_states;
next_states = f(current_states);

When clock rises, current_states = next_states;

cr »

Executing a MOV instruction

- How do we modify the hardware to execute a move instruction?

rmmovqg rA, D (rB) 410 |rA|rB D

move rA to the memory address rB + D

rmmovq %$rsi,Ox4lc(%rsp) (40 64 1c 04 00 00 00 00 00 OO

Memory
‘ newData
Clock T l \k Logic 1
_ C Write # Select
opci Tnpc‘(so 4 Reg. ID A >A\
s1|0 Read Reg. Redist
Logic 3 D 1 —> egistier L T
T T 32 ° Read Reg. File A > Y Logic 4
ogic
4 D2 > v]
s e :g l Logic 2 t ClookT > Flags
Enable Logic 5 EnableF | | Z |1 S || O

rmmovqg rA, D (rB)

move rA to the memory address rB + D

410 (]rA|rB

D

- Need new logic (Logic 6) to select the input to the ALU for Enable.
- How about other logics?

Memory

<& Data to write

K

Clock

C
orc] $ec /S0
v
Logic 3

-

Flags [s2...s9] §4
s5

l

- |~ O O |

o

< Enable Logic 6
<“— Address
newData I
Logic 1
4...519
— v (54 519y Select
Reg.ID — AU ERILS
Read Reg. _,/ Register X ﬁ 1
Dt File e U
Read Reg. g Logic 4
D 2 ' - v
t 1
Logic 2 Clock > Flags
Enable ___ | Logic5 [EM@Peh 1 [Z]|S]|©

How About Memory to Register MOV?

move data at memory address rB + D to rA

mrmovg D (rB),

Memory

K

Clock

C
orc] $ec /S0
v
Logic 3

-

Flags [s2...s9] §4
s5

l

- |~ O O |

o

Logic 2
Enable

rA 410 |rA|rB D
<& Data to write
< Enable Logic 6
<— Address
newData o~
Logic 1
4. 819 ——Pp
Write # SAGA M Select
Reg. D — RA)‘i RS
A
Read Reg. Readi
—> eqister
b Igile RS > lL_J :
Read Reg. ' Logic 4
ID 2 > / {
t ClOCkT > Flags

Logic 5 EnableF ZlIsS|lO

How About Memory to Register MOV?

move data at memory address rB + D to rA

mrmovg D (rB), rA 4 |0 |rA|rB D
<« Data to write
< Enable Logic 6
Memory [Dataread back
< Address
: —\ T
T X = Logic 1
Clock newDatay [s4..519)|—p{
_ C Write Select
opci Tnpc‘(so 4 Reg. D —> RA)‘i A\
; si|o Read Reg. i
e
Read Reg. > Logic 4
T T 4 D 2 > v i
o o3 :g '\ T Clook! . rigs
c Enable : EnableF | |z |l s || O
— 1 logicb [——»

Microarchitecture (with MOV)
Clock l l l l

Register Flags
PC — Memory 9 s o
| File
Cur. I T T T A | *]
PC Inst. New Enable? Cur. Flag
I New Addr Rd/Wr Reg. Cgrrent | Values
Data ' Reg. IDs €g.
NPeCw bata ’ Vallus Values New Flag
l ‘ Enable? l Va'lues

Combinational Logic

Read current_states;
next_states = f(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the clock rises

Single-Cycle Microarchitecture

Clock l l l l

Register Flags
PC — Memory I‘;E’"e 1s!lo
I
I A A |
Cur.
PL(JDr T Inst. T T T New | Enable? Cur. Flag
I New Rd/Wr Reg. Current Values

Addr. l
Data Reg. IDs | | val Reg.
l NPeCW Dalta g‘ alus Values New Flag l

Enable? l Va'lues

Combinational Logic

Read current_states;
next_states = calculate_new_state(current_states);
When clock rises, current_states = next_states;

next_states has to be ready before the clock rises

Key principles:
States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)

New states are calculated by combination logic.
11

Single-Cycle Microarchitecture: lllustration

Think of it as a state machine

| | o
Every cycle, one instruction gets | “Mooe - F— —
executed. At the end of the <
cycle, architecture states get 7S) memory T
modified. CC
100 N
States (All updated as clock pore
rises) <}3 Register | 4 |
. ::> e Ko
m PC reg|S‘ter $rbx = 0x100
= Cond. Code register . AN %
= Data memory PC <

= Register file

Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

-

Combinational

logic

47

CC
100

“— Cycle1 —n— Cycle2 —

Cycle3 —n— Cycle4 —

I B e B L
) @ >\C3) @
0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
0x014: addg %rdx, $rbx # %rbx <-- 0x300 CC <-- 000

0x01f: rmmovqg %$rbx, 0 ($rdx)

M[0x200] <-- 0x300

PC
0x014

Read Write
<I|j Data AU
£l> memory | N

Read Write

ports ports
<:3 Register
;> file N—

$rbx = 0x100

¢ state set according to second
irmovqg instruction

e combinational logic starting to
react to state changes

13

Clock

Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Cycle 5:

-

o

Combinational

logic

47

CC
100

000

«—— Cycle1 —

I

«— Cycle2 —

«—— Cycle 3 m— Cycled4d —

[—

\

A

@® ©) @
0x000: irmovg $0x100,%rbx # %$rbx <-- 0x100
0x00a: irmovg $0x200,%rdx # %rdx <-- 0x200
0x014: addg %rdx, $rbx # %rbx <-- 0x300 CC <-- 000
0x01f: rmmovqg %rbx, 0 (%$rdx) # M[0x200] <-- 0x300

~Aar

)

Read
ports

0x016

o

0x014

<

.- e state set according to second
Data P+ : : :
irmovqg Instruction
memory N 4
e combinational logic generates
| results for addq instruction
o

Register | , | sTrbx
e K | <
— 0x300

14

-

Combinational

logic

47

CC
000

PC
0x016

“— Cycle1 —n¢— Cycle2 —— Cycle3 — Cycle 4 —
Clock ' ' ' ' [
S NS ey I oy B
@ @ @
Cycle 1:| 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle2: | 0x00a: irmovg $0x200,%rdx # %rdx <-- 0x200
Cycle 3: | 0x014: addg %rdx, $rbx # $rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle5:| 0x01f: rmmovqg %$rbx, 0 (%$rdx) # M[0x200] <-- 0x300
Read Write '
<‘13 e state set according to addg
E instruction
£l> memory
e combinational logic starting
| to react to state changes
pors pors
<:3 Register | ,
ﬁ> file N—
$rbx = 0x300

15

«“— Cycle1 —n— C(Cycle2 —— Cycle3 —3— Cycle4
Clock ____ '
_ N N
@® @ @
Cycle 1:| 0x000: irmovg $0x100,%rbx # %rbx <-- 0x100
Cycle2:| 0x00a: irmovg $0x200,%rdx # %$rdx <-- 0x200
Cycle3:| 0x014: addg %rdx, $rbx # %$rbx <-- 0x300 CC <-- 000
Cycle 4:
Cycle5:| 0x01f: rmmovqg %$rbx, 0 (%$rdx) # M[0x200] <-- 0x300

Data
memory

Register
file

Srbx = 0x300

e state set according to addg
instruction

e combinational logic generates
results for je instruction

16

Performance Model

Execution time
of a program
(in seconds)

of Dynamic Instructions CPI

X| # of cycles taken to execute an instruction (on average)

Clock Frequency

/| number of cycles per second (1/cycle time)

Improving Performance

Execution time
of a program
(in seconds)

of Dynamic Instructions

X # of cycles taken to execute an instruction (on average)
/' number of cycles per second

1. Reduce the total number of instructions executed (mainly done by
the compiler and/or programmer).

- 2. Increase the clock frequency (reduce the cycle time). Has huge
power implications.

- 3. Reduce the CPI, i.e., execute more instructions in one cycle.
« We will talk about one technique that simultaneously achieves 2 & 3.

18

Limitations of a Single-Cycle CPU

« Cycle time
 Every instruction finishes in one cycle.

* The absolute time takes to execute each instruction varies.
Consider for instance an ADD instruction and a JMP instruction.

 But the cycle time is uniform across instructions, so the cycle time
needs to accommodate the worst case, i.e., the slowest
instruction.

- How do we shorten the cycle time (increase the frequency)?
- CPI

* The entire hardware is occupied to execute one instruction at a
time. Can’t execute multiple instructions at the same time.

- How do execute multiple instructions in one cycle?

19

A Motivating Example

300 ps 20 ps
Combinational z
logic
g
|
Clock

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
* Must have clock cycle time of at least 320 ps

Pipeline Diagrams

» Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1 320

OP2 320

OP3 . 320
Time

- 3 Instructions will take 960 ps to finish

- First cycle: Inst 1 takes 300 ps to compute new state,
20 ps to store the new states

+ Second cycle: Inst 2 starts; it takes 300 ps to
compute new states, 20 ps to store new states

- And so on...

21

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R

logic e logic e logic e

A g B g C g
Clock

- Divide combinational logic into 3 stages of 100 ps each

- Insert registers between stages to store intermediate data between
stages. These are call pipeline registers (ISA-invisible)

- Can begin a new instruction as soon as the previous one finishes
stage A and has stored the intermediate data.

- Begin new operation every 120 ps
- Cycle time can be reduced to 120 ps

22

3-Stage Pipelined Version

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
3-Stage Pipelined
|
ori_ A | B | [C
OP2 A| B | C
OP3 A B
Time

23

Comparison

« Time to finish 3 insts = 960 ps

Unpipelinea - Each inst.’s latency is 320 ps
OP1 320
OP2 320
OP3 Time 320
3-Stage Pipelined
« Time to finish 3 insets = 120 *
opiA 1 B 1 6 5 = 600 ps
OP2 A B C _
OP3 A B c - But each inst.’s latency
Time increases: 120 * 3 = 360 ps

o4

Benefits of Pipelining

« Time to finish 3 insts = 960 ps
- Each inst.’s latency is 320 ps

OP1
OP2
OP3

Time

1. Reduce the cycle time from 320 ps to 120 ps

2. CPIl reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

* Time to finish 3 insets = 120 *

opil A | B | C 5 — 600 pS
OP2 Al B | C |
oP A B C * But each inst.’s latency
3 . increases: 120 * 3 = 360 ps

25

Pipeline Trade-offs

* Pros: Decrease the total execution time (Increase the “throughput’).
e Cons: Increase the latency of each instruction as new registers are

needed between pipeline stages.

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
300 ps 20 ps Clock
Combinational z
logic
g
|

Clock o6

Throughput

* The rate at which the processor can finish executing an
instruction (at the steady state).

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
B | C Clock
A B C
A B C Throughput of this 3-stage
A B c processor is 1 instruction every
120 ps, or 8.3 Giga (billion)
A B Instructions per Second (GIPS).

27

One Requirement of Pipelining

* The stages need to be using different hardware structures.

- That is, Stage A, Stage B, and Stage C need to exercise
different parts of the combination logic.

OP1| A B C
OP2 A B C
OP3 A B

Time

* Time to finish 3 insets = 120 *

5 =600 ps

« But each inst.’s latency

increases: 120 * 3 = 360 ps

28

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

Cycle time: 120 ps
Delay: 360 ps
Thrupt: 8.3 GIPS

Cycle time: 170 ps
Delay: 510 ps
Thrupt: 5.9 GIPS

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g

Clock

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
Comb. R Comb. R Comb. R
'Og\'c e logic e logic e
g B g C g

Clock

29

Aside: Unbalanced Pipeline

* A pipeline’s delay is limited by the slowest stage. This limits the
cycle time and the throughput

170 ps
P
OP1 | A C
OP2 A B
OP3 A
Time
>
50ps 20 ps 150 ps 20 ps 100 ps
Cycle time: 170 ps
Delav: 51 Comb. R Comb. R Comb.
elay: 510 ps 'Og\'c e logic e logic
Thrupt: 5.9 GIPS g B g C

20 ps

®

Clock

30

Aside: Mitigating Unbalanced Pipeline

e Solution 1: Further pipeline the slow stages
e Not always possible. What to do if we can’t further pipeline a stage”?

e Solution 2: Use multiple copies of the slow component

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy . selectl
)
Comb. R Comb. R Comb. R
Io'g\ic \ivg/hiig e logic e logic e
9“1 g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic —
g B

What logic do you need there?

Hint: it needs to control the clock signals of the

two registers and the select signal of the MUX.
31

Aside: Mitigating Unbalanced Pipeline

e Data sent to copy 1 in odd cycles and to copy 2 in even cycles.

e This is called 2-way interleaving. Effectively the same as pipelining
Comb. logic B into two sub-stages.

e The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost
of extra hardware.

50 ps 20 ps 100 ps 20 ps 50 ps 20 ps
C opy . selec;t_l\
Comb. R Comb. R Comb. R
Iog\ic \ivg/h.ig e logic e logic e
IC ¢
d g B M g C g
¢ U
Clock X
Copy 2
R Comb.
e logic ~—
g B

Another Way to Look At the Microarchitecture

Principles:

» Execute each instruction one at a time, one after another
» EXpress every instruction as series of simple steps

» Dedicated hardware structure for completing each step
 Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

33

newPC
PC

valE,valM

Write back

Memory

Addr, Data

Execute

aluA, aluB

valA,valB

D d
A B
ecoagae dstA, dstB e

file

icode ifun
rA ,rB
valC

Instruction PC

FetCh memory increment

Fetch

= Read instruction from instruction memory

Decode
= Read program registers

Execute
= Compute value or address

Memory
= Read or write data

Write Back
= Write program registers

PC
= Update program counter

34

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

ObPq rA, rB fn|rA|rB
OPqrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |[PC < valP Update PC

35

Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10

<— R[rA

Decode valA < RIrAl

valB < R[rB]

valE <— valB + valC
Execute
Memory Mg[valE] <— valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

36

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC < Cnd ? valC : valP

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

e Choose based on setting of condition codes and branch condition

37

Pipeline Stages

Fetch

- Select current PC

- Read instruction

- Compute incremented PC
Decode

- Read program registers
Execute

- Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

38

