CSC 252: Computer Organization Spring 2024: Lecture 14

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Executing a JLE instruction

- Logic 1: if (s0 == 6) select = s1;
- Logic 2: if (s0 == 6) Enable = 1; else Enable = 0;

Executing a JLE instruction

· Logic 3??

if
$$(s0 == 6) nPC = oPC + 2$$
;

Executing a JLE instruction

- Logic 4? Does JLE write flags?
- Need another piece of logic.
- Logic 5: if (s0 == 7) EnableF = 0; else if (s0 == 6) EnableF = 1;

Microarchitecture (So far)

Executing a MOV instruction

How do we modify the hardware to execute a move instruction?

move rA to the memory address rB + D

rmmovq rA, D(rB) 4 0 rA rB D

- Need new logic (Logic 6) to select the input to the ALU for Enable.
- How about other logics?

How About Memory to Register MOV?

move data at memory address rB + D to rA

How About Memory to Register MOV?

move data at memory address rB + D to rA

Microarchitecture (with MOV)

Single-Cycle Microarchitecture

Key principles:

States are stored in storage units, e.g., Flip-flops (and SRAM and DRAM, later..)

New states are calculated by combination logic.

Single-Cycle Microarchitecture: Illustration

Think of it as a state machine

Every cycle, one instruction gets executed. At the end of the cycle, architecture states get modified.

States (All updated as clock rises)

- PC register
- Cond. Code register
- Data memory
- Register file

- state set according to second irmovg instruction
- combinational logic starting to react to state changes

- state set according to second irmovg instruction
- combinational logic generates results for addq instruction

- state set according to addq instruction
- combinational logic starting to react to state changes

- state set according to addq instruction
- combinational logic generates results for je instruction

Performance Model

```
Execution time of a program (in seconds) = # of Dynamic Instructions

CPI

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second Clock Frequency (1/cycle time)
```

Improving Performance

```
Execution time of a program (in seconds)
```

= # of <u>Dynamic</u> Instructions

X # of cycles taken to execute an instruction (on average)

/ number of cycles per second

- 1. Reduce the total number of instructions executed (mainly done by the compiler and/or programmer).
- 2. Increase the clock frequency (reduce the cycle time). Has huge power implications.
- 3. Reduce the CPI, i.e., execute more instructions in one cycle.
- We will talk about one technique that simultaneously achieves 2 & 3.

Limitations of a Single-Cycle CPU

- Cycle time
 - Every instruction finishes in one cycle.
 - The absolute time takes to execute each instruction varies.
 Consider for instance an ADD instruction and a JMP instruction.
 - But the cycle time is uniform across instructions, so the cycle time needs to accommodate the worst case, i.e., the slowest instruction.
 - How do we shorten the cycle time (increase the frequency)?
- CPI
 - The entire hardware is occupied to execute one instruction at a time. Can't execute multiple instructions at the same time.
 - How do execute multiple instructions in one cycle?

A Motivating Example

- Computation requires total of 300 picoseconds
- Additional 20 picoseconds to save result in register
- Must have clock cycle time of at least 320 ps

Pipeline Diagrams

- 3 instructions will take 960 ps to finish
 - First cycle: Inst 1 takes 300 ps to compute new state,
 20 ps to store the new states
 - Second cycle: Inst 2 starts; it takes 300 ps to compute new states, 20 ps to store new states
 - And so on...

3-Stage Pipelined Version

- Divide combinational logic into 3 stages of 100 ps each
- Insert registers between stages to store intermediate data between stages. These are call pipeline registers (ISA-invisible)
- Can begin a new instruction as soon as the previous one finishes stage A and has stored the intermediate data.
 - Begin new operation every 120 ps
 - Cycle time can be reduced to 120 ps

3-Stage Pipelined Version

3-Stage Pipelined

Comparison

Unpipelined

- Time to finish 3 insts = 960 ps
- Each inst.'s latency is 320 ps

3-Stage Pipelined

- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

Benefits of Pipelining

- Time to finish 3 insts = 960 ps
- Each inst.'s latency is 320 ps

- 1. Reduce the cycle time from 320 ps to 120 ps
- 2. CPI reduces from 1 to 1/3 (i.e., executing 3 instruction in one cycle)

- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

Pipeline Trade-offs

- Pros: Decrease the total execution time (Increase the "throughput").
- Cons: Increase the latency of each instruction as new registers are needed between pipeline stages.

Throughput

 The rate at which the processor can finish executing an instruction (at the steady state).

One Requirement of Pipelining

- The stages need to be using different hardware structures.
- That is, Stage A, Stage B, and Stage C need to exercise different parts of the combination logic.

- Time to finish 3 insets = 120 *
 5 = 600 ps
- But each inst.'s latency increases: 120 * 3 = 360 ps

Aside: Unbalanced Pipeline

 A pipeline's delay is limited by the slowest stage. This limits the cycle time and the throughput

Aside: Unbalanced Pipeline

 A pipeline's delay is limited by the slowest stage. This limits the cycle time and the throughput

Aside: Mitigating Unbalanced Pipeline

- Solution 1: Further pipeline the slow stages
 - Not always possible. What to do if we can't further pipeline a stage?
- Solution 2: Use multiple copies of the slow component

Aside: Mitigating Unbalanced Pipeline

- Data sent to copy 1 in odd cycles and to copy 2 in even cycles.
- This is called 2-way interleaving. Effectively the same as pipelining Comb. logic B into two sub-stages.
- The cycle time is reduced to 70 ps (as opposed to 120 ps) at the cost of extra hardware.

Another Way to Look At the Microarchitecture

Principles:

- Execute each instruction one at a time, one after another
- Express every instruction as series of simple steps
- Dedicated hardware structure for completing each step
- Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory

Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

Fetch

Read instruction from instruction memory

Decode

Read program registers

Execute

Compute value or address

Memory

Read or write data

Write Back

Write program registers

PC

Update program counter

Stage Computation: Arith/Log. Ops

	OPq rA, rB	
	icode:ifun ← M₁[PC]	
Fetch	rA:rB ← M ₁ [PC+1]	
Decode	valP ← PC+2	
	valA ← R[rA]	
Execute	valB ← R[rB]	
	valE ← valB OP valA	
Execute	Set CC	
Memory		
Write	R[rB] ← valE	
back		
PC update	PC ← valP	

Read instruction byte Read register byte

Compute next PC
Read operand A
Read operand B
Perform ALU operation
Set condition code register

Write back result

Update PC

Stage Computation: rmmovq

rmmovq rA, D(rB) 4 0 rA rB D

	rmmovq rA, D(rB)	
Fetch	icode:ifun ← M₁[PC]	
	rA:rB ← M ₁ [PC+1]	
	valC ← M ₈ [PC+2]	
	valP ← PC+10	
Decode	valA ← R[rA]	
	valB ← R[rB]	
Execute	valE ← valB + valC	
Memory	M ₈ [valE] ← valA	
Write		
back		
PC update	PC ← valP	

Read instruction byte

Read register byte

Read displacement D

Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

Stage Computation: Jumps

	jXX Dest	
	icode:ifun ← M₁[PC]	Read instruction byte
Fetch		
	valC ← M ₈ [PC+1]	Read destination address
	valP ← PC+9	Fall through address
Decode		
Execute	Cnd ← Cond(CC,ifun)	Take branch?
Memory		
Write		
back		
PC update	PC ← Cnd ? valC : valP	Update PC

- Compute both addresses
- Choose based on setting of condition codes and branch condition

Pipeline Stages

Fetch

- Select current PC
- Read instruction
- Compute incremented PC

Decode

Read program registers

Execute

Operate ALU

Memory

Read or write data memory

PC

Write Back

Update register file

