CSC 252: Computer Organization
Spring 2024: Lecture 15

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Another Way to Look At the Microarchitecture

Principles:

Execute each instruction one at a time, one after another

Express every instruction as series of simple steps

Dedicated hardware structure for completing each step

Follow same general flow for each instruction type

Fetch: Read instruction from instruction memory
Decode: Read program registers

Execute: Compute value or address

Memory: Read or write data

Write Back: Write program registers

PC: Update program counter

newPC

PC

valE,valM

Write back
Memory
Addr, Data
Execute
aluA, aluB
valA,valB
A, srcB
DGCOde egistBer
file
icode ifun
rA ,rB
valC
Instruction PC
Fetch memory increment

Fetch

= Read instruction from instruction memory

Decode
= Read program registers

Execute
= Compute value or address

Memory
= Read or write data

Write Back
= Write program registers

PC
= Update program counter

Stage Computation: Arith/Log. Ops

Read instruction byte
Read register byte

Compute next PC

Perform ALU operation

Set condition code register

Write back result

ObPq rA, rB fn|rA|rB
OPqrA, rB
icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]
valP < PC+2
Decode valA < R[rA] Read operand A
valB < R[rB] Read operand B
valE < valB OP valA
Execute
Set CC
Memory
Write R[rB] < valE
back
PC update |[PC < valP Update PC

Stage Computation: rmmovg

rmmovqrA, D(rB) | 4 | O |[rA|rB

D

rmmovq rA, D(rB)

icode:ifun < M,[PC]
Fetch rA:rB < M,[PC+1]

valC < My[PC+2]

valP < PC+10

<— R[rA

Decode valA < RIrAl

valB < R[rB]

valE <— valB + valC
Execute
Memory Mg[valE] <— valA
Write
back
PC update |PC < valP

Read instruction byte
Read register byte

Read displacement D
Compute next PC

Read operand A

Read operand B

Compute effective address

Write value to memory

Update PC

Stage Computation: Jumps

jXX Dest
icode:ifun < M,[PC]
Fetch
valC < M;[PC+1]
valP < PC+9
Decode
Execute .
Cnd < Cond(CC,ifun)
Memory
Write
back
PC update [PC < Cnd ? valC : valP

e Compute both addresses

Read instruction byte

Read destination address
Fall through address

Take branch?

Update PC

e Choose based on setting of condition codes and branch condition

Pipeline Stages

Fetch

- Select current PC

- Read instruction

- Compute incremented PC
Decode

- Read program registers
Execute

- Operate ALU
Memory

- Read or write data memory
Write Back

- Update register file

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory

Execute

aluA, aluB

valA, valB

d_srcA,
d_srcB

Decode

A B
Register™
file -

Write back

Instruction
memory

Fetch

PC
increment

predPC

PC

Real-World Pipelines: Car Washes

Sequential

Pipelined

L
;;;;;;
A

|dea
- Divide process into independent stages
- Move objects through stages in sequence
- At any given times, multiple objects being processed

Pipeline lllustration

Insta

Fetch

Decode

Execute

Memory

Write
back

Another lllustration

239
Clock -
OP1
OoP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. Comb. R
= logic — logic F=>e
A C g
Clock

10

Another lllustration

241
Clock B
OP1
OP2 A B C
OP3 A B C
0 120 240 360 480 640
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. Comb. R
= logic =I>el=)y logic logic =I>e
A g B C g

Clock

11

Another lllustration

640

300
Clock
OP1
OP2 A 3 C
OP3 B C
0 120 240 360 480
Time
100 ps 20 ps 100 ps 20 ps 100 ps 20 ps
Comb. R Comb. : R
=1 logic F=>lef=1{ logi — e
A g B g
Clock

12

Another lllustration

359
Clock | B
OP1 _
OP2 A B C
OP3 A B C
Io 1I20 2|40 3|60 4|80 6|4O

Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. R Comb.
':{> logic :|'> e :|'> logic
A g B

Clock

13

Making the Pipeline Really Work

e Control Dependencies
 What is it?
« Software mitigation: Inserting Nops
e Software mitigation: Delay Slots

14

Control Dependency

- Definition: Outcome of instruction A determines whether or not

instruction B should be executed or not.
- Jump instruction example below:

- Jne L1 determines whether irmovg $1,

executed

- But jne doesn’t know its outcome until after its Execute stage

1

Srax should be

2

3

4

5

D

6

X0rg %sSrax, srax F
jne L1 # Not taken
hepovg S$1, %rax # Fall Through
L1 nopovg $4, %$rcx # Target
irmovg $3, %rax # Target + 1

F

7

m O m

8

m O mn | <Z

W
M
E
D

9

m o mZ =

<

momZ s

omZ S

15

Delay Slots

™ Can we make use of
the 2 wasted slots?

Target

Have to make sure do C doesn’t
dependondo Aanddo B!!!

Fall Through

Target + 1

1 2 3 4 5 6 7 8 9
F D E | M W
F D E | M W
F D E M W
F D E M W
F D E | M W
F D E | M
F D E
if (cond) {
do A();
} else {
do B();

}
do C();

16

Delay Slots

™ Can we make use of
the 2 wasted slots?

Target

do C() ;

_ if (cond) {
A less obvious

example do_A();
} else {
do_B();

Fall Through

Target + 1

1 2 3 4 5 6 7 8 9

F D E M| W
F D E M| W
F D E M W
F D E M W
F D E M| W
F D E M
F D E
add A, B add A, B
or C, D sub E, F
sub E, F Jle 0x200
Jle 0x200 or C, D
add A, C add A, C

Why don’t we move
the sub instruction?

17

Resolving Control Dependencies

e Software Mechanisms

* Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Delay slot: insert instructions that do not depend on the effect
of the preceding instruction. These instructions will execute
even if the preceding branch is taken — old RISC approach

* Hardware mechanisms
e Stalling (Think of it as hardware automatically inserting nops)
* Branch Prediction
e Return Address Stack

18

Hardware Generated Nops (Bubble and Stalling)

- Stall: the pipeline register shouldn’t be written
- Bubble: signals correspond to a nop
- Why is it good for the hardware to do so anyways?

(Bubble)
Sildy nom
R R R
Fetch e Decode e Execute |e Memory
g g g

Write
back

19

How are Stall and Bubble Implemented in Hardware?

Input =y

Output = x

Normal —DIX

=0

Input =y

stall ﬁ bubble

—>

=0

Output = x

Stall =DIX =D

Input =y
Bubble —DiX

stall bubble
stall_y bubdle

Output = x

—>

bubble

stall
=0 —ﬂ— =1

=

=S

=

Rising
clock

Rising
clock

Rising
clock

Output =y
= ol

Output = x
=

I:> Output =nop

Dl o>
p

20

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Also takes a guess of
the jump direction

X0rg %sSrax, srax FI D/E M W
jne L1 # Not taken F¥ D E M| W
irmovg $1, %rax # Fall Through F D E M W
L1 irmovg $4, %rcx # Target F D E M W
irmovg $3, %rax # Target + 1 F' D E M| W

21

Branch Prediction

|dea: instead of waiting, why not just guess the direction of jump?
If prediction is correct: pipeline moves forward without stalling
If mispredicted: kill mis-executed instructions, start from the correct target

Static Prediction

e Always Taken

e Always Not-taken
Dynamic Prediction

e Dynamically predict taken/not-taken for each specific jump instruction

22

Static Prediction

Observation (Assumption really): Two uses of jumps

e People use jumps to check corner cases. These branches are mostly
not taken because corner cases are rare.

e People use jumps to implement loops. These branches are mostly
taken because a loop takes multiple iterations.

Strategy:
e Forward jumps (i.e., 1 f-else): always predict not-taken
e Backward jumps (i.e., loop): always predict taken

C.:qu srsi, srdi <before>
idi . .corner case L1: <body> Vostly taken
r \ cmpg B, A

.corner case:

<do B> Mostly not taken jl L1
ret <after>

23

Static Prediction

Knowing branch prediction strategy helps us write faster code
e Any difference between the following two code snippets?

e \What if you know that hardware uses the always non-taken
branch prediction”?

1f (cond) { 1f (!cond) {
do A() do B ()
} else { } else {

do B() do A()

24

Dynamic Prediction

e Simplest idea:

* |f last time taken, predict taken; if last time not-taken, predict
not-taken

e Called 1-bit branch predictor
* \Works nicely for loops

for (1i=0; 1 <5; 1i++) {..}

Iteration #1 0 1 2 3 4

Predicted Outcome N T T T T

Actual Outcome T T T T N

25

Dynamic Prediction

* With 1-bit prediction, we change our mind instantly if mispredict
e Might be too quick. Thus 2-bit branch prediction: we have to
mispredict twice in a row before changing our mind

for (1i=0; 1 <5; i++) {..}

Predict with 1-bit N|T [T|T|TiN|T [T|T|TiN[T|T |T|TIN[T|T[T|T

Actual Outcome T [T [T[T|NIT [T|T [T |NiT [T|T[T|NiT T[T |T|N

Predict with 2-bit N|N|T|[T|TiT[TTIT|ITT [TITTIT T[T [TIT]T

26

More Advanced Dynamic Prediction

* ook for past histories across instructions

e Branches are often correlated

e Direction of one branch determines another

cond1 branch not-
taken means (x <=0)
branch taken

x =0

if (condl) x = 3
1f (cond2) vy = 19
if (x <= 0) z = 13

27

What Happens If We Mispredict?

demo-7.ys 1 2 3 B! 5 6 7 8 9 10
0x000: xorqg %*rax, 3rax F D E M| W
0x002: jne target # Not taken F D E M| W
0x016: irmovq $2,%rdx # Target F D
bubble LE|mM|w
0x020: irmovqg $3, %rbx # Target+l F
bubble LpleE|[M]|w
0x00b: irmovq $1,%rax # Fall through F D E M| W
0x015: halt F D E M| W

Cancel instructions when mispredicted
* Assuming we detect branch not-taken in execute stage

* On following cycle, replace instructions in execute and
decode by bubbles

* No side effects have occurred yet

28

Return Instruction

0x000: irmovg Stack,%rsp # Intialize stack pointer
0x00a: call p # Procedure call

0x013: irmovqg $5,%rsi # Return point

0x01d: halt

0x020: s 0x20

0x020: irmovg $-1,%rdi # procedure

0x02a: ret

0x02b: irmovqg $1,%rax # Should not be executed
0x035: irmovqg $2,%rcx # Should not be executed
0x03f: irmovqg $3,%rdx # Should not be executed
0x049: irmovqg $4,%rbx # Should not be executed
0x100: .pos 0x100

0x100: Stack: # Stack: Stack pointer

Stalling for Return

0x026: ret F| D| E| M| W
nop F| D| E| M| W
nop F| D| E| M| W
nop F| D| E| M
0x013: irmovg $5, %$rsi # Return F D E

= As ret passes through pipeline, stall at fetch stage
e While in decode, execute, and memory stage

= Inject bubble into decode stage
= Release stall when reach write-back stage

30

Return Address Stack (RAS)

e Stalling for return is silly since we know where exactly we need
to jump to, except the jump target is retrieved later in the
memory stage.

e Can we get that sooner? Where should we get it?

31

Return Address Stack (RAS)

Branch Predictor

PC
predicted
next PC
push return link pop return address
on procedure call on procedure return

A hardware stack;
different from the |
stack in memory. T~

{ Return-address §
stack

Today: Making the Pipeline Really Work

* Data Dependencies
* Inserting Nops
e Stalling
 Out-of-order execution

33

Data Dependencies

1 irmovg $50, S%Srax
2 addqg srax, 5%rbx
¥

3 mrmovqg 100 (%rbx), %rdx

- Result from one instruction used as operand for another
- Read-after-write (RAW) dependency

- Very common in actual programs

- Must make sure our pipeline handles these properly
- Get correct results
+ Minimize performance impact

34

A Subtle Data Dependency

- Jump instruction example below:
- Jne L1 determines whether irmovg $1, $%rax should be executed

- But jne doesn’t know its outcome until after its Execute stage.
Why?
- There is a data dependency between xorg and jne. The “data” is the
status flags.

XO0rg %srax, srax F D EJM W

jne L1l # Not taken F D*E M W

nop F D E M W

nop F D E M W

irmovg $1, %rax # Fall Through F D E M W
L1 dirmovg $4, S%rcx # Target F D E M

irmovg $3, %rax # Target + 1 F D E

35

Data Dependencies in Single-Cycle Machines

Combinational z
logic g
Clock
OP1
OP2 <
OP3

Time

In Single-Cycle Implementation:

- Each operation starts only after the previous operation finishes.
Dependency always satisfied.

Data Dependencies in Pipeline Machines

Comb. R Comb. R Comb. R
logic e logic e logic e
A g B g C g
Clock
OP1 A B C ,
OP2 A| B| C
OP3 A | B | C
OP4 A B C
Time

Data Hazards happen when:
- Result does not feed back around in time for next operation

Data Dependencies: No Nop

0x000:
0x00a:
0x014:
O0x01l6:

Remember registers get
updated in the Write-back stage

irmovg $10, $rdx
irmovg $3,%rax
addg %rdx, srax

halt

1

2

3

4

5

6

F| D| E|] M| W
F| D[E| M| W
F| D| E| M| W
F| D| E| M| W

7

addq reads wrong %rdx and %rax

8

38

Data Dependencies: 1 Nop

0x000:
0x00a:
0x014:
0x015:
0x017:

addq still reads wrong %rdx and %rax

irmovg $10, $rdx
irmovg $3,%rax
nop

addg %rdx, Srax

halt

1 2 38 4 5 6 7 8
F| D| E| M| W
F| D| Ef M| W
F| D] E| M| W
F| D| E| M| W
F| D| E| M

39

Data Dependencies: 2 Nop’s

0x000:
0x00a:
0x014:
0x015:
O0x01l6:
0x018:

addq reads the correct %rdx,

1 2 3 4 5 6 7 8 9 10
irmovg $10, $rdx F D El M| W
irmovg $3, %rax F D E{ M| W
nop F D E{ M| W
nop F D| E| M| W
addg %rdx, $rax F| D| E| M| W
halt F D E M| W

but %rax still wrong

40

Data Dependencies: 3 Nop’s

0x000:
0x00a:
0x014:
0x015:
O0x01l6:
0x017:
0x019:

addq reads the correct %rdx

irmovg $10, $rdx
irmovg $3,%rax
nop
nop
nop

addg %rdx, $Srax

halt

and %rax

1 2 3 4 5 6 7 8 9 10 11
F| D| E| M| W
F| D| E| M| W
F| D| Ef M| W
F| D] E| M| W
F| D] E| M| W
F| D| E| M| W

F| D| E| M| W

41

Resolving Data Dependencies

e Software Mechanisms

* Adding NOPs: requires compiler to insert nops, which also take
memory space — not a good idea

* Hardware mechanisms
e Stalling
* Forwarding
e QOut-of-order execution

42

Hardware Generated Nops (Bubble and Stalling)

Stall

rdviR RR2

Fetch

Stall

Decode

bubble
(nop)

Execute

Memory

Write
back

43

Detecting Stall Condition

- Using a “scoreboard”. Each register has a bit.

- Every instruction that writes to a register sets the bit.

- Every instruction that reads a register would have to check the bit first.
- If the bit is set, then generate a bubble
- Otherwise, free to go!!

44

Detecting Stall Condition

0x000:
0x00a:

O0x014:
0x016:

irmovg $10, $rdx FID|E| M| W
irmovg $3,%rax FIDI|E| M| W
bubble E | M| W
bubble " E | M| W
bubble |- rrE(M|W
addg %rdx, $rax F|D| D|D|D|IE| M|W
halt F F F F D E M
Cycle 6
W
CyC|e 3 W_dstE = $rax
M
CyC|e 4 M_dstE = $rax .
E .
e _dstE = 3rax y
D D D
SrcA = $rdx SrcA = $rdx SrcA = $rdx
srcB = $rax srcB = $rax srcB = $rax

45

Data Forwarding

Naive Pipeline
- Register isn’t written until completion of write-back stage
- Source operands read from register file in decode stage
- The decode stage can’t start until the write-back stage finishes
Observation
- Value generated in execute or memory stage
Trick
- Pass value directly from generating instruction to decode stage
- Needs to be available at end of decode stage

46

Data Forwarding Example

1 2 3 4 5 6 7 8 9 10

0x000: irmovg $10, $rdx F D E M| W

0x00a: irmovg $3,%rax F D E MW

0x014: nop F D EfM| W

0x015: nop FI DJE| M| W

0x016: addg %rdx, $rax FwD E M| W
0x018: halt F| D| E| M| W

irmovqg writes $rax to the register file at the end of the write-back
stage

- But the value of $rax is already available at the beginning of the write-
back stage

- Forward $rax to the decode stage of addg.

Data Forwarding Exampl

0x000: irmovg $10,%rdx

0x00a: irmovg $3,%rax

0x014: addg %rdx, $rax
0x01l6: halt

Register $rdx
Forward from the memory stage

Register $rax

Forward from the execute stage

e #2

2

F

D

F

oimZ|S

48

Hardware Design

W_icode, W_valM W_valE, W_valM, W_dstE, W_dstM

Memory
Addr, Data
Execute
A B

Decode Register M

file -

Write back
Fetch Instruction PC
memory increment
predPC

PC

49

Limitation of Forwardlng

demo-luh.ys 1 2 4 5 6 7 8 9 10 N
0x000: irmovg $128,%rdx F D E M| W
0x00a: irmovg $3,%rcx F D E M| W
0x014: rmmovg %rcx, 0(%rdx) F D E M W
0x0le: irmovg $10, Srbx F D E M| W
0x028: mrmovqg 0(%rdx),*rax # Load %rax F D E M| W
0x032: addg “rbx, *rax # Use %rax FID|E|M|W
0x034: halt F D E M W
Load-use dependency Cycle 7 Cycle 8
- Value needed by end of decode M M
i . | 7 M_dSstE = S rbx M_dstM = rax
stage In CycCle M_valE =10 =1 | m_valM « M[128] =
- Value read from memory in
memory stage of cycle 8 .
D
4

valA « M_valE =10 o

valB « R[%rax] =

Error

50

Avoiding Load/Use Hazard

demo-luh.ys 7 8 9 10 11 12
0x000: irmovg $12 srdx F D E M| W
0x00a: irmovg $3,%rcx F D E M| W
0x014: rmmovg %rcx, 0(%rdx) F D E M| W
0x0le: irmovqg $10, Srbx F D E M| W
0x028: mrmovg 0(%rdx),%rax # Load %rax F D E M W
bubble | E M| W
0x032: addg *rbx, %rax # Use %rax F D D E M| W
0x034: halt FIF|D|E| M|W
- Stall using instruction for one cycle Cycle 8
- Can then pick up loaded value by P —
. _QslE = “rbx
forwarding from memory stage W_valE = 10
M

M_dstM = $rax
m_valM « M[128] =

.

D

valA « W _valE =10
valB ¢ m valM =3

51

Out-of-order Execution

* Compiler could do this, but has limitations

* Generally done in hardware

r0
r3
rd

r/

-

Long-latency instruction.
Forces the pipeline to stall.

rl + r2
MEM[r0]
r3 + ro
r5 + ril

'

r0 =

r3
r/

r4

rl + r2
MEM[xrO0]
r5 + rl

r3 + 16

52

Out-of-order Execution

r0
r3
r4
r6

0
r3

r4

rl + r2
MEM[rO]
r3 + ré6
r5 + ril

rl + r2
MEM[rO]
r3 + ro6
r5 + ril

Is this correct?

—

Is this correct?

—

r(
r3
r6

r4

r(
r3
r4

r4

rl + r2
MEM[rO]
r5 + ril

r3 + r6
rl + r2
MEM[rO]

r5 4+ ril

r3 4+ ro

“Tomasolu Algorithm?” is the algorithm that is most

widely implemented in modern hardware to get out-of-

order execution right.

53

