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• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation

• Pipeline implementation

• Resolving data dependency and control dependency


• What about memory?

• Sometimes called the main memory to differentiate it from other storage units  

inside the CPU such as the register file.

• What is a programmer’s view of memory?
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Abstract View of RAM
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Address
n

CE (chip enable)

WE (write enable)

k

Content

• Random access memory

• Given an arbitrary address, a RAM should return data at that address

• Think of it as a hardware implementation of an array

• What are data structures that do not support random accesses?
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Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

• Ideal memory’s requirements oppose each other


• Bigger is slower

• Bigger ! Takes longer to determine the location


• Faster is more expensive

• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs. 

Tape


• Higher bandwidth is more expensive

• Need more ports, higher frequency, or faster technology
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Memory Technology:  D Flip-Flop (DFF)
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• Very fast

• Very expensive to build


• 6 NOT gates (2 transistors / gate)

• 3 AND gates (3 transistors / gate)

• 2 OR gates (3 transistors / gate)

• 27 transistors in total for just one bit!!


• Usually used to build the register file, not the main memory
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Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the 

memory and get a value back

• Two cross coupled inverters store a single bit


• Feedback path enables the stored value to persist in the “cell”

• 4 transistors for storage

• 2 transistors for access

• 6 transistors in total per bit

7

row select

bi
tli

ne

_b
itl

in
e1 0

11 0



Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory

• Capacitor charge state indicates stored value


• Whether the capacitor is charged or 
discharged indicates storage of 1 or 0


• 1 capacitor

• 1 access transistor
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DRAM Cell

9 37

• Capacitors will leak!

• DRAM cell loses charge over time

• DRAM cell needs to be refreshed 

periodically. 
• Refresh takes time and power. 

When refreshing can’t read the 
data. A major issue, lots of 
research going on to reduce the 
refresh overhead.
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Latch vs. DRAM vs. SRAM

• DFF

• Fastest

• Low density (27 transistors per bit)

• High cost


• SRAM

• Faster access (no capacitor)

• Lower density (6 transistors per bit; there are designs w/ fewer Ts)

• Higher cost

• No need for refresh

• Manufacturing compatible with logic process (no capacitor)


• DRAM

• Slower access (capacitor)

• Higher density (1 transistor + 1 capacitor per bit)

• Lower cost

• Requires refresh (power, performance, circuitry)

• Manufacturing requires putting capacitor and logic together
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Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.


• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)

• Hard Disk (~ 5 years)

• Tape (~ 15-30 years)

• DNA (centuries)


• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators, 

security subsystems,…)

• Files in Smartphones, mp3 players, tablets, laptops

• Backup
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Summary of Trade-Offs

• Bigger is slower

• Flip-flops/Small SRAM, sub-nanosec

• SRAM,  KByte~MByte, ~nanosec

• DRAM, Gigabyte, ~50 nanosec

• Hard Disk, Terabyte, ~10 millisec


• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte


• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM
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• How do we read data from a RAM?

• Given an address, how does it return the data at the address?


• Simplest solution: read data at all addresses, and then use a MUX to 
select the data based on the address.

• This is how the register file is implemented.


• Downsides?

• It reads all the data at the same time; very inefficient (slow and 

power hungry) if the RAM is big.

• Register file is at most hundreds of bytes; main memory could be 

hundreds of GBs!
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Hardware Implementation of Large RAMs



• Organize a RAM as a 2D array.

• We first select a row to activate, and read all the data in that row. No 

other rows’ data will be read.

• Then use a MUX to select the data from the activated row.
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• Each cell stores data at a particular address.
• How do we make sure we activate only one row?

An SRAM Array (So Far)
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word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111
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• If the row select signal is 1, the two NMOS transistors act 
as two closed switches. We can read the cell data.

• If the row select signal is 0, the two NMOS transistors act 
as two open switches, deactivating the access to the cell.

Recall: (De)Activating an SRAM Cell
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(De)Activating an SRAM Row
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word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

What 
logic 
here?
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Recall: Decoder
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C0 = !W1 & !W0

C1= !W1 & W0

C2 = W1 & !W0

C3 = W1 & W0

W1 W0 C3 C2 C1 C0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

W1
W0 C0

C1

C2

C3
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• Use a 2-to-4 decoder.
• The input to the decoder is the first two bits in the address.

(De)Activating an SRAM Row
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• Use the last two bits in the address to operate the MUX.

How to Select From a Row?
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• A RAM is usually organized as a 2D array; both DRAM and SRAM.

• An address split into two: row address and column address.


• The row address activates a row, and the column address selects 
data from a row.
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Hardware Implementation of Large RAMs
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What If a Row is Still too Big?
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Addresses 
0-15

Addresses 
16-31

Addresses
32-63

Addresses
992-1023……

Chip Enable (CE)

• What data go into the CE signal? How does CE disable and 
enable a chip?
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Aside: DRAM Chip Organization

23

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

A DRAM chip

addr

data

2 bits

/

8 bits

/

Memory

controller

(to/from CPU)



Carnegie Mellon

Aside: Reading DRAM Cell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Aside: Reading DRAM Cell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Cell (2,1) copied from buffer to data lines, and eventually back to the 

CPU.
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Aside: Reading DRAM Cell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the 

cells. A DRAM controller must periodically read each row within the allowed 
refresh time (10s of ms) to restore charge.
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Aside: DRAM Scheduling

• Assume the following memory accesses: 
A, B, C


• Which one is faster?

• A —> B —> C

• A —> C —> B


• Most common memory scheduling policy: 
FR-FCFS


• First-ready, first-come-first-serve

• Prioritize addresses to data that is 

already in the row buffer; otherwise first-
come-first-serve
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We want both fast and large Memory

• But we cannot achieve both with a single level of memory


• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the 

levels are farther from the processor)

• Key: manage the data such that most of the data the processor 

needs in the near future is kept in the fast(er) level(s)
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Memory Hierarchy
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Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small

• Large memory: slow


• Balance latency, cost, size, 
bandwidth
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Register File (DFF)

32 words, sub-nsec


L1 cache (SRAM)

~32 KB, ~nsec


L2 cache (SRAM)

512 KB ~ 1MB, many nsec


L3 cache (SRAM)

.....


Main memory (DRAM), 

GB, ~100 nsec


Hard Disk

100 GB, ~10 msec

A Modern Memory Hierarchy
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Memory in a Modern System
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How Things Have Progressed

1995 low-mid 
range
Hennessy & Patterson, Computer 
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid 
range
www.dell.com, $449 including 17” 
LCD flat panel

~200B
0.33ns

8MB 
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB 
0.33ns

16GB
<100ns

256GB
10us
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How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast 
and small memory?


• Answer: ensure most of the data the processor needs in the near 
future is kept in the fast(er) level(s)


• How do we know what data will be needed in the future?

• Do we know before the program runs?


• If so, programmers or compiler can place the right data at the 
right place


• Do we know only when the program runs?

• If so, only the hardware can effectively place the data
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How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main 

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx


• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the 

near future, and place in the cache.

• How does the hardware know that??
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Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and 
over again, and tend to access data next to each other.


• Temporal locality:  

• Recently referenced items are likely  

to be referenced again in the near future


• Spatial locality:  

• Items with nearby addresses tend  

to be referenced close together in time
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference 

pattern)

• Temporal Locality: Reference variable sum each iteration.


• Instruction references

• Spatial Locality: Reference instructions in sequence.

• Temporal Locality: Cycle through loop repeatedly. 
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sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;
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Use Locality to Manage Memory Hierarchy

• Exploiting temporal locality:

• If a piece of data is recently accessed, very likely it will be needed 

again, so moved it to cache.

• Exploiting spatial locality:


• When moving a piece of data from the memory to the cache, move its 
adjacent data to the cache as well.
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sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;
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The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Library


• Recently-used books tend to stay on desk, because you will likely use 
it again.


• Comp Org. books, books for classes you are currently taking

• Organize books in the shelf such that adjacent books are mostly 

accessed around the same time
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Cache Illustrations
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Cache Illustrations
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Cache Illustrations
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12

12

12

Address b is stored in cache

Data in address b is needed

Address b is not in cache: 
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