
CSC 252: Computer Organization 
 Spring 2025: Lecture 16

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

2

CPU

So far in 252…

PC
Register

File

Memory
Code

Data

Stack

Addresses

Data

InstructionsCondition
CodesALU

• We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation

• Pipeline implementation

• Resolving data dependency and control dependency

• What about memory?

• Sometimes called the main memory to differentiate it from other storage units

inside the CPU such as the register file.

• What is a programmer’s view of memory?

Carnegie Mellon

Abstract View of RAM

3

Address
n

CE (chip enable)

WE (write enable)

k

Content

• Random access memory

• Given an arbitrary address, a RAM should return data at that address

• Think of it as a hardware implementation of an array

• What are data structures that do not support random accesses?

Carnegie Mellon

Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

4

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower

• Bigger ! Takes longer to determine the location

• Faster is more expensive

• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive

• Need more ports, higher frequency, or faster technology

5

Carnegie Mellon

Memory Technology: D Flip-Flop (DFF)

6

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate)

• 3 AND gates (3 transistors / gate)

• 2 OR gates (3 transistors / gate)

• 27 transistors in total for just one bit!!

• Usually used to build the register file, not the main memory

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”

• 4 transistors for storage

• 2 transistors for access

• 6 transistors in total per bit

7

row select

bi
tli

ne

_b
itl

in
e1 0

11 0

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory

• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor

• 1 access transistor

8

row enable

_b
itl

in
e

Carnegie Mellon

DRAM Cell

9 37

• Capacitors will leak!

• DRAM cell loses charge over time

• DRAM cell needs to be refreshed

periodically.
• Refresh takes time and power.

When refreshing can’t read the
data. A major issue, lots of
research going on to reduce the
refresh overhead.

Carnegie Mellon

Latch vs. DRAM vs. SRAM

• DFF

• Fastest

• Low density (27 transistors per bit)

• High cost

• SRAM

• Faster access (no capacitor)

• Lower density (6 transistors per bit; there are designs w/ fewer Ts)

• Higher cost

• No need for refresh

• Manufacturing compatible with logic process (no capacitor)

• DRAM

• Slower access (capacitor)

• Higher density (1 transistor + 1 capacitor per bit)

• Lower cost

• Requires refresh (power, performance, circuitry)

• Manufacturing requires putting capacitor and logic together

10

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)

• Hard Disk (~ 5 years)

• Tape (~ 15-30 years)

• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators,

security subsystems,…)

• Files in Smartphones, mp3 players, tablets, laptops

• Backup

11

Carnegie Mellon

Summary of Trade-Offs

• Bigger is slower

• Flip-flops/Small SRAM, sub-nanosec

• SRAM, KByte~MByte, ~nanosec

• DRAM, Gigabyte, ~50 nanosec

• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte

• DRAM, < 1$ per Megabyte

• Hard Disk < 1$ per Gigabyte

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

12

• How do we read data from a RAM?

• Given an address, how does it return the data at the address?

• Simplest solution: read data at all addresses, and then use a MUX to
select the data based on the address.

• This is how the register file is implemented.

• Downsides?

• It reads all the data at the same time; very inefficient (slow and

power hungry) if the RAM is big.

• Register file is at most hundreds of bytes; main memory could be

hundreds of GBs!

13

Hardware Implementation of Large RAMs

• Organize a RAM as a 2D array.

• We first select a row to activate, and read all the data in that row. No

other rows’ data will be read.

• Then use a MUX to select the data from the activated row.

14

Hardware Implementation of Large RAMs

cols

rows

0 1 2 3

0

1

2

3

Column decoder / mux

Carnegie Mellon

• Each cell stores data at a particular address.
• How do we make sure we activate only one row?

An SRAM Array (So Far)

15

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Carnegie Mellon

• If the row select signal is 1, the two NMOS transistors act
as two closed switches. We can read the cell data.

• If the row select signal is 0, the two NMOS transistors act
as two open switches, deactivating the access to the cell.

Recall: (De)Activating an SRAM Cell

16

row select

bi
tli

ne

_b
itl

in
e1 0

11 0

Carnegie Mellon

(De)Activating an SRAM Row

17

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

What
logic
here?

Carnegie Mellon

Recall: Decoder

18

C0 = !W1 & !W0

C1= !W1 & W0

C2 = W1 & !W0

C3 = W1 & W0

W1 W0 C3 C2 C1 C0

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

W1
W0 C0

C1

C2

C3

Carnegie Mellon

• Use a 2-to-4 decoder.
• The input to the decoder is the first two bits in the address.

(De)Activating an SRAM Row

19

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

Ro
w

 d
ec

od
er

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Addr [3:2]

Carnegie Mellon

• Use the last two bits in the address to operate the MUX.

How to Select From a Row?

20

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

MUX

Ro
w

 d
ec

od
er

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

Addr [3:2]

Addr [1:0]???

• A RAM is usually organized as a 2D array; both DRAM and SRAM.

• An address split into two: row address and column address.

• The row address activates a row, and the column address selects
data from a row.

21

Hardware Implementation of Large RAMs

Carnegie Mellon

What If a Row is Still too Big?

22

Addresses
0-15

Addresses
16-31

Addresses
32-63

Addresses
992-1023……

Chip Enable (CE)

• What data go into the CE signal? How does CE disable and
enable a chip?

Carnegie Mellon

Aside: DRAM Chip Organization

23

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

A DRAM chip

addr

data

2 bits

/

8 bits

/

Memory

controller

(to/from CPU)

Carnegie Mellon

Aside: Reading DRAM Cell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

24

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

A DRAM chip

3

addr

data

2

/

8

/

Memory

controller

Carnegie Mellon

Aside: Reading DRAM Cell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Cell (2,1) copied from buffer to data lines, and eventually back to the

CPU.

25

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

CAS = 1

addr

data

2

/

8

/

Memory

controller

supercell

(2,1)

supercell

(2,1)

To CPU

A DRAM chip

Carnegie Mellon

Aside: Reading DRAM Cell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the

cells. A DRAM controller must periodically read each row within the allowed
refresh time (10s of ms) to restore charge.

26

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

addr

data

2

/

8

/

Memory

controller

A DRAM chip

Carnegie Mellon

Aside: DRAM Scheduling

• Assume the following memory accesses:
A, B, C

• Which one is faster?

• A —> B —> C

• A —> C —> B

• Most common memory scheduling policy:
FR-FCFS

• First-ready, first-come-first-serve

• Prioritize addresses to data that is

already in the row buffer; otherwise first-
come-first-serve

27

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

We want both fast and large Memory

• But we cannot achieve both with a single level of memory

• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the

levels are farther from the processor)

• Key: manage the data such that most of the data the processor

needs in the near future is kept in the fast(er) level(s)

28

Carnegie Mellon

Memory Hierarchy

29

fast

small

big but slow

move what you use here

backup

everything

here

fa
st

er
 p

er
 b

yt
e

ch
ea

pe
r p

er
 b

yt
e

CPU

Carnegie Mellon

Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small

• Large memory: slow

• Balance latency, cost, size,
bandwidth

30

CPU Main

Memory

(DRAM)
Registers

(DFF)

Cache

(SRAM)

Hard Disk

Carnegie Mellon

Register File (DFF)

32 words, sub-nsec

L1 cache (SRAM)

~32 KB, ~nsec

L2 cache (SRAM)

512 KB ~ 1MB, many nsec

L3 cache (SRAM)

.....

Main memory (DRAM),

GB, ~100 nsec

Hard Disk

100 GB, ~10 msec

A Modern Memory Hierarchy

31

Carnegie Mellon

Memory in a Modern System

32

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 M
odules

DRAM MEMORY
CONTROLLER

Carnegie Mellon

How Things Have Progressed

1995 low-mid
range
Hennessy & Patterson, Computer
Arch., 1996

200B
5ns

64KB
10ns

32MB
100ns

2GB
5ms

2009 low-mid
range
www.dell.com, $449 including 17”
LCD flat panel

~200B
0.33ns

8MB
0.33ns

4GB
<100ns

750GB
4ms

2015  
mid range

~200B
0.33ns

8MB
0.33ns

16GB
<100ns

256GB
10us

33

RF
(DFF)

Cache

(SRAM)

Main
Memory
(DRAM) Disk

http://www.dell.com/

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Fundamental question: how do we know what data to put in the fast
and small memory?

• Answer: ensure most of the data the processor needs in the near
future is kept in the fast(er) level(s)

• How do we know what data will be needed in the future?

• Do we know before the program runs?

• If so, programmers or compiler can place the right data at the
right place

• Do we know only when the program runs?

• If so, only the hardware can effectively place the data

34

Carnegie Mellon

How to Make Effective Use of the Hierarchy

• Modern computers provide both ways

• Register file: programmers explicitly move data from the main

memory (slow but big DRAM) to registers (small, very fast)

• movq (%rdi), %rdx

• Cache, on the other hand, is automatically managed by hardware

• Sits between registers and main memory, “invisible” to programmers

• The hardware automatically figures out what data will be used in the

near future, and place in the cache.

• How does the hardware know that??

3544

CPU Cache

$ MemoryRegisters

Carnegie Mellon

Locality: An Empirical Observation

• Principle of Locality: Programs tend to use the same data over and
over again, and tend to access data next to each other.

• Temporal locality:

• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:

• Items with nearby addresses tend  

to be referenced close together in time

36

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference

pattern)

• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.

• Temporal Locality: Cycle through loop repeatedly.

37

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;

Carnegie Mellon

Use Locality to Manage Memory Hierarchy

• Exploiting temporal locality:

• If a piece of data is recently accessed, very likely it will be needed

again, so moved it to cache.

• Exploiting spatial locality:

• When moving a piece of data from the memory to the cache, move its
adjacent data to the cache as well.

38

sum = 0;

for (i = 0; i < n; i++)

	 sum += a[i];

return sum;

Carnegie Mellon

The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Library

• Recently-used books tend to stay on desk, because you will likely use
it again.

• Comp Org. books, books for classes you are currently taking

• Organize books in the shelf such that adjacent books are mostly

accessed around the same time

39

Carnegie Mellon

Cache Illustrations

40

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Memory

(big but slow)

CPU

Carnegie Mellon

Cache Illustrations

41

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Data in address b is neededRequest Data

at Address 14

14 Address b is in cache: Hit!

Memory

(big but slow)

Cache

(small but fast)

CPU

Carnegie Mellon

Cache Illustrations

42

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Request data

at Address 12

Address b is fetched from

memory

Request: 12

12

12

12

Address b is stored in cache

Data in address b is needed

Address b is not in cache:
Miss!

Memory

(big but slow)

Cache

(small but fast)

CPU

