CSC 252: Computer Organization
Spring 2025: Lecture 18

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcements

® Cache problem set: https://cs.rochester.edu/courses/252/
spring2025/handouts.html

® Not to be turned in. Won’t be graded.
® Assignment 4 soon to be released later today.

https://cs.rochester.edu/courses/252/spring2025/handouts.html
https://cs.rochester.edu/courses/252/spring2025/handouts.html
https://cs.rochester.edu/courses/252/spring2025/handouts.html

General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd N\
4 —

+ [2 N) \\
foeee Cache size:

s= < C = S x E x B data bytes

2s sets oo Overhead:

0 0000000 O0OCGOEOGOOGOOOOOOONONONONOEEOEOTOO Tag’ Valld blt’ dlrtyblt
Plus bits for implementing

| replacement policy

(not shown).

e ————

d v tag 0|12 ccoeee B-1

dirty bit / \ ~~ ~" —

(if write-back) valid bit B = 2b bytes per cache line (the data)

Cache Access

S = 2s sets <

E = 2¢ lines per set
A

e Locate set

e Check if any line in set
has matching tag

e Yes + line valid: hit

 Locate data starting
at offset

Address of word:

t bits s bits | b bits

— A

tag set Line
index offset

v tag 0]1]2] cccc-- B-1

data begins at this offset

| — _/

valid bit B = 2b bytes per cache line (the data)

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

(Address of char:

ol1]2[3]alsl6]7
v tag thits | 0..01 | 100

v tag 0j1]2]|3|4]|5]|6]|7

find set

S = 2s sets <

v tag 0j1]2]|3|4]|5]|6]|7

Vv tag 0|l1]2)13]4]|5]|16]7

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:
valid? + match: assume yes = hit

t bits 0..01 | 100

v tag 0|1]|2|3|4|5]|6]|7

block offset

Example: Direct Mapped Cache

Direct mapped: One line per set
Assume: cache line size 8 bytes

Address of char:
valid? + match: assume yes = hit

t bits 0..01 | 100

v tag 01112314]|5]|6]7

block offset

Byte 4 is here

If tag doesn’t match: old line is evicted and replaced

Direct-Mapped Cache Simulation

4-bit address space, i.e., Memory = 16 bytes
B=2 bytes/line, S=4 sets, E=1 line/set

Address trace (reads, one byte per read):

t=1 s=2 b=1
X XX X
v Tag Line
Set0 | 1 0 MI[O-1]
Set1l
Set 2
Set3 | 1 0 M[6-7]

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

<« The two bytes at memory address 8 and @

<« The two bytes at memory address 6 and 7

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache line size 8 bytes

Address of short int:

v tag 0[1|2|3]14]|5]|6]|7

tag

thits | 0..01 | 100
v tag 0|1]|2]|3|4]|5]|6]|7 tag 5|67
vl [tag | [o[1]2[3]4][5[6]7 tag 5]6]7]| —find set
v tag 0|1|2]|3|4]|5]|6]|7 tag 5|67

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache line size 8 bytes

valid? +

Address of short int:

match: yes = hit

compare both

t bits

0..01

100

tag 0|1]|2]|3|4

tag 0|1]2]|3]14]|5

Offset within a line

10

E-way Set Associative Cache (Here: E = 2)

E =2: Two lines per set
Assume: cache line size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + |match: yes = hit

vl [tag | [o[1]2]3[a]5][6]7 vl [tag | [o]1]2]3a]5]6[7]] —

Offset within a line

short int (2 Bytes) is here

No match:
e One line in set is selected for eviction and replacement
« Replacement policies: random, least recently used (LRU), ...

1

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
o - 4-bit address space, i.e., Memory = 16 bytes
S=2 sets, E=2 cache lines/set
Address trace (reads, one byte per read):
0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit
v Tag Line
Set0 (1 00 [M[O0-1] 1 10 |M[8-9]
Setl (1 01 [M[6-7] 0

12

Today

* Processes and Signals: running multiple programs concurrently
* Processes

13

Processes

e Definition: A process is an instance of a running
program.

- One of the most profound ideas in computer science
- Not the same as “program” or “processor”

e Process provides each program with two key
abstractions:

- “Owns” the CPU
- Each program seems to have exclusive use of the CPU
- Done by the OS kernel through “context switching”

- Private address space

- Each program seems to have exclusive use of main
memory.

- Provided by OS through “virtual memory”

Memory

Stack

Heap

Data

Code

CPU

Registers

14

Multiprocessing: The lllusion

Memory

Stack

Memory

Heap

Stack

Data

Heap

Code

Data

Code

CPU

Registers

CPU

Registers

- Applications for one or more users

Memory

Stack

Heap

Data

Code

CPU

Registers

* Computer runs many processes simultaneously

- Web browsers, email clients, editors, ...

- Background tasks

- Monitoring network & 1/O devices

15

Multiprocessing Example

X Xterm
Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads

Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle

SharedLibs: 576K resident, OB data, OB linkedit,
MemRegions: 27358 total, 1127M resident, 35M private, 434M shared,

PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,
YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,

MNetworks: packets: 41046228/11GC in, B6083096/77G out,
Disks: 17874391/349C read, 12847373/5940 written,

11:47:07

PID COMMAND #CPU TIME #TH #l/0 #PORT #MREG RPRVT RSHRD RSIZE VPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 2IM 244 21M BBM 763M

93051 usbmuxd 0,0 00:04,10 3 1 47 B6 436K 216K 480K BOM 2422M
93006 iTunesHelper 0,0 00:01,23 2 1 5 78 728K 3124K 1124K 43M 2429M
84286 bash 0,0 00:00,11 1 0 20 24 224K 732K 484K 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 B9EK 872K 632K 9728K 2382M
95933~ Microsoft Ex 0,3 21:58,97 10 3 360 954 16M B5M 46M 114M 1057M
94751 sleep 0,0 00:00,00 1 0 17 20 92k 212K 360K 9632K 2370M
94739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220Kk 173BK 48M 2409M
94737 top 6,5 00:02,53 171 0 30 23 1416K 216K 2124K 17M 2378M
94713 automountd 0,0 00:00,02 7 1 53 B4 BBOK 216K 2184K 5H3M 2413M
94701 ocspd 0,0 00:00,05 4 1 61 54 1268K 2644K 3132K 5HOM 2426M
94661 Grab 0.6 00:02,75 6 3 222+ 383+ 15M+ 2BM+ 40M+ YOM+ 2006M+
94653 cookied 0,0 00:00,15 2 1 40 61 3316K 224K 4088K 42M 2411M
L2040 o] P T .. B e B | 4 o 04 o Tutu e P I D T Kx1 P I. Ral ¥ | A0kl o420k

* Running program “top” on Unit/Linux
- System has 123 processes, 5 of which are active

- ldentified by Process ID (PID)

16

Multiprocessing lllustration

e Memory
. Process1 ! Process 2 Process N
Stack ' Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU Context switch
Y managed by the OS.
: Not controllable by

programmers.

17

Multiprocessing: The Multi-Core Case

Memory

Stack Stack Stack

Heap Heap Heap

Data Data oo Data

Code Code Code

Saved Saved Saved
registers registers registers

cP * Multicore processors

CPU U - Multiple CPUs on single chip

Registers Registers . Share main memory (and some of

the caches)

- Each can execute a separate process

- Scheduling of processors onto
cores done by kernel

18

Concurrent Processes

* Each process is a logical control flow.

e TWO processes run concurrently (are concurrent) if their flows
overlap in time

e Otherwise, they are sequential

e Examples (running on single core):
. Concurrent: A&B,A&C

- Sequential: B& C

Process A Process B Process C

Time

19

User View of Concurrent Processes

* Control flows for concurrent processes are physically disjoint in
time

* However, we can think of concurrent processes as running in
parallel with each other

Process A Process B Process C

Time

20

Context Switching

* Processes are managed by a shared chunk of memory-resident
OS code called the kernel

- Important: the kernel is not a separate process, but rather runs as part of
some existing process.

e Control flow passes from one process to another via a context

switch

Process A Process B

I
I
I
I
: user code
I

kernel code } context switch

Time user code

kernel code } context switch

user code

<

21

Today

* Processes and Signals: running multiple programs concurrently

* Process Control

22

Obtaining Process IDs

*pid t getpid(void)
- Returns PID of current process

®epid t getppid(void)
- Returns PID of parent process

23

Creating and Terminating Processes

From a programmer’s perspective, we can think of a process as
being in one of three states

* Running

- Process is either executing, or waiting to be executed and will
eventually be scheduled (i.e., chosen to execute) by the kernel

* Stopped

- Process execution is suspended and will not be scheduled until
further notice (through something call signals)

* Terminated
- Process is stopped permanently

24

Terminating Processes

¢ Process becomes terminated for one of three reasons:
- Receiving a signal whose default action is to terminate

- Returning from the main routine

- Calling the exit function

®vold exit (int status)
- Terminates with an exit status of status
. Convention: normal return status is O, nonzero on error

- Another way to explicitly set the exit status is to return an integer value
from the main routine

® oxit is called once but never returns.

25

Creating Processes

* Parent process creates a new running child process by calling
fork

e int fork(void)
- Returns 0 to the child process, child’s PID to parent process
- Child is almost identical to parent:

- Child get an identical (but separate) copy of the parent’s (virtual)
address space (i.e., same stack copies, code, etc.)

- Child gets identical copies of the parent’s open file descriptors
- Child has a different PID than the parent

e fork is interesting (and often confusing) because
it is called once but returns twice

26

fork Example

int main()

{

pid_t pid;
int x = 1;

pid = Fork();

if (pid == 0) { /* Child =/
printf("child : x=%d\n", ++x);
exit(0);

}

/* Parent x/
printf("parent: x=%d\n", —--x);
exit(0);

fork.c

linux> ./fork
parent: x=0
child : x=2

e Call once, return twice
e Concurrent execution

e Can’t predict execution
order of parent and child

e Duplicate but separate
address space

¢ x has a value of 1 when fork
returns in parent and child

e Subsequent changes to x
are independent

e Shared open files

e stdout is the same in both
parent and child

27

Process Address Space

Loaded from the
executable file

0x400000
0

Kernel space

User stack
(created at runtime)

T

l

Memory-mapped region for
shared libraries

T

<

Run-time heap
(created bymalloc)

Read/write data segment
(.data, .bss)

Read-oiffy code segment ™

Unused

Memory
invisible to
user code

srsp
(stack
pointer)

brk

Program
Counter

28

What Happens at fork () ?

Parent
Process

Parent Address Space

Child Address Space

Stack
x=1

Stack
x=1

Code Segment
int main()

{
pid_t pid;
int x = 1;

Program —) pid = Fork();

Counter

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/* Parent x/
x—; // 0
exit(0);

Code Segment
int main()

{
pid_t pid;
int x = 1;

pid = FOrk(); <« —

if (pid == 0) {
/* Child x/
X++; // 2
exit(0);

}

/* Parent x/
Xx—; // 0
exit(0);

Child

Process
Program
Counter

29

