
CSC 252: Computer Organization 
 Spring 2025: Lecture 19 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

2

Carnegie Mellon

Creating Processes
• Parent process creates a new child process by calling fork

• Child get an identical (but separate) copy of the parent’s (virtual)

address space (i.e., same stack copies, code, etc.)

•int fork(void)

• Returns 0 to the child process

• Returns child’s PID to the parent process

3

Carnegie Mellon

fork Example

4

int main()

{

 pid_t pid;

 int x = 1;

 pid = Fork();

 if (pid == 0) { /* Child */

 printf("child : x=%d\n", ++x);

	 exit(0);

 }

 /* Parent */

 printf("parent: x=%d\n", --x);

 exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

• Call once, return twice

• Concurrent execution

• Can’t predict execution
order of parent and child

• Duplicate but separate
address space

• x has a value of 1 when fork
returns in parent and child

• Subsequent changes to x
are independent

• Shared open files

• stdout is the same in both

parent and child

Carnegie Mellon

Process Address Space

5

Kernel space

Memory-mapped region for

shared libraries

Run-time heap

(created by malloc)

User stack

(created at runtime)

Unused
0

%rsp

(stack

pointer)

Memory

invisible to
user code

brk

0x400000

Read/write data segment

(.data, .bss)

Read-only code segment

(.init, .text, .rodata)

Loaded from the
executable file Program

Counter

Carnegie Mellon

What Happens at fork()?

6

Stack

x = 1

Code Segment

int main()

{

 pid_t pid;

 int x = 1;

 pid = Fork();

 if (pid == 0) {

 /* Child */

 x++; // 2

 exit(0);

 }

 /* Parent */

 x--; // 0

 exit(0);

}

Parent
Process

Program

Counter

Parent Address Space Child Address Space

Stack

x = 1

Code Segment

int main()

{

 pid_t pid;

 int x = 1;

 pid = Fork();

 if (pid == 0) {

 /* Child */

 x++; // 2

 exit(0);

 }

 /* Parent */

 x--; // 0

 exit(0);

}

Child
Process

Program

Counter

Carnegie Mellon

Process Graph Example

7

int main()

{

 pid_t pid;

 int x = 1;

 pid = Fork();

 if (pid == 0) { /* Child */

 printf("child : x=%d\n", ++x);

	 exit(0);

 }

 /* Parent */

 printf("parent: x=%d\n", --x);

 exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c

Carnegie Mellon

Interpreting Process Graphs
• Original graph:

• Abstracted graph:

8

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:

Carnegie Mellon

fork Example: Two consecutive forks

9

void fork2()

{

 printf("L0\n");

 fork();

 printf("L1\n");

 fork();

 printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:

L0

L1

Bye

Bye

L1

Bye

Bye

Infeasible output:

L0

Bye

L1

Bye

L1

Bye

Bye

forks.c

Carnegie Mellon

fork Example: Nested forks in parent

10

void fork4()

{

 printf("L0\n");

 if (fork() != 0) {

 printf("L1\n");

 if (fork() != 0) {

 printf("L2\n");

	 }

 }

 printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:

L0

L1

Bye

Bye

L2

Bye

Infeasible output:

L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

fork Example: Nested forks in children

11

void fork5()

{

 printf("L0\n");

 if (fork() == 0) {

 printf("L1\n");

 if (fork() == 0) {

 printf("L2\n");

 }

 }

 printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:

L0

Bye

L1

L2

Bye

Bye

Infeasible output:

L0

Bye

L1

Bye

Bye

L2

forks.c

Carnegie Mellon

Reaping Child Processes
• When process terminates, it still consumes system resources

• Examples: Exit status, various OS tables

• Called a “zombie”: Living corpse, half alive and half dead

• Reaping

• Performed by parent on terminated child (using wait or waitpid)

• Parent is given exit status information

• Kernel then deletes zombie child process

• What if parent doesn’t reap?

• If any parent terminates without reaping a child, then the orphaned child

will be reaped by init process (pid == 1)

• So, only need explicit reaping in long-running processes

• e.g., shells and servers

12

Carnegie Mellon

wait: Synchronizing with Children

13

void fork9() {

 int child_status;

 if (fork() == 0) {

 printf("HC: hello from child\n");

	 exit(0);

 } else {

 printf("HP: hello from parent\n");

 wait(&child_status);

 printf("CT: child has terminated\n");

 }

 printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT

Bye

forks.c

Feasible output:

HC

HP

CT

Bye

Infeasible output:

HP

CT

Bye

HC

Carnegie Mellon

wait: Synchronizing with Children

• Parent reaps a child by calling the wait function

•int wait(int *child_status)

• Suspends current process until one of its children terminates

• Return value is the pid of the child process that terminated

• If child_status != NULL, then the integer it points to will be set to
a value that indicates reason the child terminated and the exit status:

• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATUS, WIFSIGNALED,
WTERMSIG, WIFSTOPPED, WSTOPSIG,
WIFCONTINUED

• See textbook for details

14

Carnegie Mellon

Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information

about exit status

15

void fork10() {

 int i, child_status;

 for (i = 0; i < N; i++)

 if (fork() == 0) {

 exit(100+i); /* Child */

 }

 for (i = 0; i < N; i++) { /* Parent */

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminate abnormally\n", wpid);

 }

}

forks.c

Carnegie Mellon

waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options)

• Suspends current process until specific process terminates

• Various options (see textbook)

16

void fork11() {

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0)

 exit(100+i); /* Child */

 for (i = N-1; i >= 0; i--) {

 pid_t wpid = waitpid(pid[i], &child_status, 0);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminate abnormally\n", wpid);

 }

} forks.c

Carnegie Mellon

17

 char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};

 char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

 if ((pid = Fork()) == 0) { /* Child runs program */

 if (execve(myargv[0], myargv, environ) < 0) {

 printf("%s: Command not found.\n", myargv[0]);

 exit(1);

 }

 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

execve: Loading and Running Programs

Carnegie Mellon

execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:

• Executable file filename

• Argument list argv

• By convention argv[0]==filename

• Environment variable list envp

• “name=value” strings (e.g., USER=droh)

• Overwrites code, data, and stack

• Retains PID, open files and signal context

• Called once and never returns

• …except if there is an error

18

Carnegie Mellon

execve Example

19

envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

 if ((pid = Fork()) == 0) { /* Child runs program */

 if (execve(myargv[0], myargv, environ) < 0) {

 printf("%s: Command not found.\n", myargv[0]);

 exit(1);

 }

 }

Executes “/bin/ls –lt /usr/include” in child process using
current environment:

(argc == 3)

Carnegie Mellon

Summary
• Processes

• At any given time, system has multiple active processes

• Only one can execute at a time on a single core, though

• Each process appears to have total control of processor + private memory space

• Spawning processes

• Call fork

• One call, two returns

• Process completion

• Call exit

• One call, no return

• Reaping and waiting for processes

• Call wait or waitpid

• Loading and running programs

• Call execve (or variant)

• One call, (normally) no return

20

Carnegie Mellon

Today
• Process Control

• Signals: The Way to Communicate with Processes

21

Carnegie Mellon

Signals

• A signal is a small message that notifies a process that an
event of some type has occurred in the system

• Sent from the OS kernel

• Could be requested by another process, by user, or automatically by

the kernel

• Signal type is identified by small integer ID’s (1-30)

22

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated

Carnegie Mellon

Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by

updating some state in the context of the destination
process

• Kernel sends a signal for one of the following reasons:

• Kernel has detected a system event such as:

• Exception: divide-by-zero (SIGFPE)

• Interrupt: user pressing Ctrl + C (SIGINT)

• The termination of a child process (SIGCHLD)

• Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process.

• Note: kill doesn’t mean you are going to kill the target process. It is just a

system call that allows you to send signals. Of course the signal you send
could be SIGKILL.

23

Carnegie Mellon

Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal

• Some possible ways to react:

• Ignore the signal (do nothing)

• Terminate the process

• Catch the signal by executing a user-level function called signal handler

24

(2) Control passes

to signal handler

(3) Signal
handler runs

(4) Signal handler

returns to

next instruction

IcurrInext

(1) Signal received
by process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program sends
arbitrary signal to a process

• Examples

• /bin/kill –9 24818 

Send SIGKILL to process 24818

• /bin/kill itself doesn’t kill the

process. 9 is the ID for the SIGKILL
signal, which terminates the
process

25

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

26

Fore-

ground

job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground

process group 20

Background

process group 32

Background

process group 40

pid=20

pgid=20

pid=32

pgid=32

pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() 
Return process group of current process

setpgid() 
Change process group of a process

Carnegie Mellon

Sending Signals with /bin/kill Program

• /bin/kill program
sends arbitrary signal to a
process or process group

• Examples

• /bin/kill –9 –24817 

Send SIGKILL to every process in
process group 24817

27

linux> ./forks 16

Child1: pid=24818 pgrp=24817

Child2: pid=24819 pgrp=24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24818 pts/2 00:00:02 forks

24819 pts/2 00:00:02 forks

24820 pts/2 00:00:00 ps

linux> /bin/kill -9 -24817

linux> ps

 PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh

24823 pts/2 00:00:00 ps

linux>

Carnegie Mellon

Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every

process in the foreground process group.

• SIGINT – default action is to terminate each process

• Typing ctrl-z causes the kernel to send a SIGTSTP to
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

28

Carnegie Mellon

Example of ctrl-c and ctrl-z

29

bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107

<types ctrl-z>

Suspended

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28107 pts/8 T 0:01 ./forks 17

28108 pts/8 T 0:01 ./forks 17

28109 pts/8 R+ 0:00 ps w

bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

 PID TTY STAT TIME COMMAND

27699 pts/8 Ss 0:00 -tcsh

28110 pts/8 R+ 0:00 ps w

STAT (process state) Legend:

First letter:

S: sleeping

T: stopped

R: running

Second letter:

s: session leader

+: foreground proc group

See “man ps” for more

details

Carnegie Mellon

Sending Signals with kill Function

30

void fork12()

{

 pid_t pid[N];

 int i;

 int child_status;

 for (i = 0; i < N; i++)

 if ((pid[i] = fork()) == 0) {

 /* Child: Infinite Loop */

 while(1)

 ;

 }

 for (i = 0; i < N; i++) {

 printf("Killing process %d\n", pid[i]);

 kill(pid[i], SIGINT);

 }

 for (i = 0; i < N; i++) {

 pid_t wpid = wait(&child_status);

 if (WIFEXITED(child_status))

 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));

 else

 printf("Child %d terminated abnormally\n", wpid);

 }

}

forks.c

Carnegie Mellon

Default Actions to Signals

• Each signal type has a predefined default action, which is
one of:

• The process terminates

• The process stops until restarted by a SIGCONT signal

• The process ignores the signal

31

Carnegie Mellon

Installing Signal Handlers

• The signal function modifies the default action associated
with the receipt of signal signum:

• handler_t *signal(int signum, handler_t *handler)

• Different values for handler:

• SIG_IGN: ignore signals of type signum

• SIG_DFL: revert to the default action on receipt of signals of type signum

• Otherwise, handler is the address of a user-level function (signal handler)

• Called when process receives signal of type signum

• Referred to as “installing” the handler

• Executing handler is called “catching” or “handling” the signal

• When the handler executes its return statement, control passes

back to instruction in the control flow of the process that was
interrupted by receipt of the signal

32

Carnegie Mellon

Signal Handling Example

33

void sigint_handler(int sig) /* SIGINT handler */

{

 printf("So you think you can stop the bomb with ctrl-c, do you?\n");

 sleep(2);

 printf("Well...");

 fflush(stdout);

 sleep(1);

 printf("OK. :-)\n");

 exit(0);

}

int main()

{

 /* Install the SIGINT handler */

 if (signal(SIGINT, sigint_handler) == SIG_ERR)

 unix_error("signal error");

 /* Wait for the receipt of a signal */

 pause();

 return 0;

} sigint.c

Carnegie Mellon

Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process)
that runs concurrently with the main program

34

Process A

while (1)

 ;

Process A

handler(){

 …

}

Process B

Time

Carnegie Mellon

Nested Signal Handlers	
• Handlers can be interrupted by other handlers

35

(2) Control passes
to handler S

 Main program

(5) Handler T
returns to
handler S

Icurr

Inext

(1) Program
catches signal s

 Handler S Handler T

(3) Program
catches signal t

(4) Control passes
to handler T

(6) Handler S
returns to
main program

(7) Main program
resumes

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

36

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time

Carnegie Mellon

Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it

switches to p from kernel mode to user mode (e.g.,
after a context switch)

37

Signal delivered

to process A

Signal received

by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

Carnegie Mellon

Pending and Blocked Signals

• A signal is pending if sent but not yet received

• There can be at most one pending signal of any particular type for a

process

• That is: Signals are not queued

• If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

• A pending signal is received at most once

• A process can block/mask the receipt of certain signals

• Blocked signals can be delivered, i.e., in the pending state, but will not

be received/responded to until the signal is unblocked

38

Carnegie Mellon

Pending/Blocked Bits	

• Kernel maintains pending and masked bit vectors in the
context of each process

• pending: represents the set of pending signals

• Kernel sets bit k in pending when a signal of type k is delivered

• Kernel clears bit k in pending when a signal of type k is received

• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function

• Also referred to as the signal mask.

39

Carnegie Mellon

Receiving Signals

• Right before kernel is ready to pass control to process p

• Kernel computes the set of pending & nonmasked signals

for process p (PNM set)

• If (PNM is empty), i.e., no signal is pending & nonmasked

• No signals to respond to; simply pass control to next instruction in the
logical flow for p

• Else

• Choose least nonzero bit k in pnm and force process p to receive

signal k, i.e., by executing the corresponding signal handler

• Repeat for all nonzero k in pnm

• Pass control to next instruction in logical flow for p

40

Carnegie Mellon

Blocking Signals

41

 sigset_t mask, prev_mask;

 sigemptyset(&mask);

 sigaddset(&mask, SIGINT);

 /* Block SIGINT and save previous blocked set */

 sigprocmask(SIG_BLOCK, &mask, &prev_mask);

 /* Code region that will not be interrupted by SIGINT */

 /* Restore previous blocked set, unblocking SIGINT */

 sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function

• sigemptyset – Create empty set

• sigfillset – Add every signal number to set

• sigaddset – Add signal number to set

• sigdelset – Delete signal number from set

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

42

static int x = 5;

void handler(int sig)

{

 x = 10;

}

int main(int argc, char **argv)

{

 int pid, y = 0;

 Signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 if (x == 5)

 y = x * 2; // You’d expect y == 10

 exit(0);

}

What if the following happens:

• Parent process executes and

finishes if (x == 5)

• Context switch to child,

which then terminates, sends
a SIGCHLD signal

• Another context switch back
to parent, and now the kernel
needs to execute the
SIGCHLD handler

• When return to parent
process, y == 20!

Carnegie Mellon

Safe Signal Handling

• Handlers are tricky because they are concurrent with main
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the

main program and the signal handler, that is:

• when a signal happens/delivers (depends on user or other process)

• when the signal handler will be executed (depends on kernel)

• If not careful, shared data structures can be corrupted

43

Carnegie Mellon

Fixing the Signal Handling Bug

44

static int x = 5;

void handler(int sig)

{

 x = 10;

}

int main(int argc, char **argv)

{

 int pid;

 sigset_t mask_all, prev_all;

 sigfillset(&mask_all);

 signal(SIGCHLD, handler);

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

 if (x == 5)

 y = x * 2; // You’d expect y == 10

 Sigprocmask(SIG_SETMASK, &prev_all, NULL);

 exit(0);

}

• Block all signals before
accessing a shared,
global data structure.

• Can’t use a lock (later
in this course)

Carnegie Mellon

Async-Signal-Safety	

• Function is async-signal-safe if it either has no access to
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.

• Posix guarantees 117 functions to be async-signal-safe

• Source: “man 7 signal”

• Popular functions on the list:

• _exit, write, wait, waitpid, sleep, kill

• Popular functions that are not on the list:

• printf, sprintf, malloc, exit

• Unfortunate fact: write is the only async-signal-safe output

function

45

