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Today
• Process Control

• Signals: The Way to Communicate with Processes
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Creating Processes
• Parent process creates a new child process by calling fork

• Child get an identical (but separate) copy of the parent’s (virtual) 

address space (i.e., same stack copies, code, etc.)

•int fork(void)


• Returns 0 to the child process

• Returns child’s PID to the parent process
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fork Example
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int main()

{

    pid_t pid;

    int x = 1;


    pid = Fork(); 

    if (pid == 0) {  /* Child */

        printf("child : x=%d\n", ++x); 

	 exit(0);

    }


    /* Parent */

    printf("parent: x=%d\n", --x); 

    exit(0);

}

linux> ./fork

parent: x=0

child : x=2

fork.c

• Call once, return twice

• Concurrent execution


• Can’t predict execution 
order of parent and child


• Duplicate but separate 
address space


• x has a value of 1 when fork 
returns in parent and child


• Subsequent changes to x 
are independent


• Shared open files

• stdout is the same in both 

parent and child
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Process Address Space
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Kernel space

Memory-mapped region for

shared libraries

Run-time heap

(created by malloc)

User stack

(created at runtime)

Unused
0

%rsp 

(stack 

pointer)

Memory

invisible to 
user code

brk

0x400000

Read/write data segment

(.data, .bss)

Read-only code segment

(.init, .text, .rodata)

Loaded  from  the  
executable file Program


Counter
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What Happens at fork()?
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Stack

x = 1

Code Segment

int main()

{

  pid_t pid;

  int x = 1;


  pid = Fork(); 

  if (pid == 0) {

    /* Child */

    x++; // 2

    exit(0);

  }


  /* Parent */

  x--; // 0

  exit(0);

}

Parent 
Process

Program

Counter

Parent Address Space Child Address Space

Stack

x = 1

Code Segment

int main()

{

  pid_t pid;

  int x = 1;


  pid = Fork(); 

  if (pid == 0) {

    /* Child */

    x++; // 2

    exit(0);

  }


  /* Parent */

  x--; // 0

  exit(0);

}

Child 
Process

Program

Counter
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Process Graph Example
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int main()

{

    pid_t pid;

    int x = 1;


    pid = Fork(); 

    if (pid == 0) {  /* Child */

        printf("child : x=%d\n", ++x); 

	 exit(0);

    }


    /* Parent */

    printf("parent: x=%d\n", --x); 

    exit(0);

}

child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit
Parent

Child

fork.c
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Interpreting Process Graphs
• Original graph:


• Abstracted graph:
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child: x=2

main fork printf

printf

x==1

exit

parent: x=0

exit

a b

f

dc

e

a b e c f d

Feasible execution ordering:

a b ecf d

Infeasible execution ordering:
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fork Example: Two consecutive forks
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void fork2()

{

    printf("L0\n");

    fork();

    printf("L1\n");

    fork();

    printf("Bye\n");

} printf printf fork

printf

printffork

printf fork

printf

printf

Bye

L0

Bye

L1

L1

Bye

Bye

Feasible output:

L0

L1

Bye

Bye

L1

Bye

Bye

Infeasible output:

L0

Bye

L1

Bye

L1

Bye

Bye

forks.c



Carnegie Mellon

fork Example: Nested forks in parent
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void fork4()

{

    printf("L0\n");

    if (fork() != 0) {

       printf("L1\n");

       if (fork() != 0) {

           printf("L2\n");

	 }

    }

    printf("Bye\n");

}

printf printf fork

printf

printffork

printf

L0

Bye

L1

Bye

L2

printf

Bye

Feasible output:

L0

L1

Bye

Bye

L2

Bye

Infeasible output:

L0

Bye

L1

Bye

Bye

L2

forks.c
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fork Example: Nested forks in children
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void fork5()

{

    printf("L0\n");

    if (fork() == 0) {

        printf("L1\n");

        if (fork() == 0) {

            printf("L2\n");

        }

    }

    printf("Bye\n");

}

printf printf

fork

printf

printf

fork

printf

L0

L2

Bye

L1 Bye

printf
Bye

Feasible output:

L0

Bye

L1

L2

Bye

Bye

Infeasible output:

L0

Bye

L1

Bye

Bye

L2

forks.c
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Reaping Child Processes
• When process terminates, it still consumes system resources


• Examples: Exit status, various OS tables

• Called a “zombie”: Living corpse, half alive and half dead


• Reaping

• Performed by parent on terminated child (using wait or waitpid)

• Parent is given exit status information

• Kernel then deletes zombie child process


• What if parent doesn’t reap?

• If any parent terminates without reaping a child, then the orphaned child 

will be reaped by init process (pid == 1)

• So, only need explicit reaping in long-running processes


• e.g., shells and servers

12
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wait: Synchronizing with Children
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void fork9() {

    int child_status;


    if (fork() == 0) {

        printf("HC: hello from child\n");

	 exit(0);

    } else {

        printf("HP: hello from parent\n");

        wait(&child_status);

        printf("CT: child has terminated\n");

    }

    printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT

Bye

forks.c

Feasible output:

HC

HP

CT

Bye

Infeasible output:

HP

CT

Bye

HC
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wait: Synchronizing with Children

• Parent reaps a child by calling the wait function


•int wait(int *child_status)

• Suspends current process until one of its children terminates

• Return value is the pid of the child process that terminated


• If child_status != NULL, then the integer it points to will be set to  
a value that indicates reason the child terminated and the exit status:


• Checked using macros defined in wait.h

• WIFEXITED, WEXITSTATUS, WIFSIGNALED, 
WTERMSIG, WIFSTOPPED, WSTOPSIG, 
WIFCONTINUED


• See textbook for details
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Another wait Example
• If multiple children completed, will take in arbitrary order

• Can use macros WIFEXITED and WEXITSTATUS to get information 

about exit status
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void fork10() {

   int i, child_status;


    for (i = 0; i < N; i++)

        if (fork() == 0) {

            exit(100+i); /* Child */

        }

    for (i = 0; i < N; i++) { /* Parent */

        pid_t wpid = wait(&child_status);

        if (WIFEXITED(child_status))

            printf("Child %d terminated with exit status %d\n",

                   wpid, WEXITSTATUS(child_status));

        else

            printf("Child %d terminate abnormally\n", wpid);

    }

}

forks.c
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waitpid: Waiting for a Specific Process
• pid_t waitpid(pid_t pid, int &status, int options)


• Suspends current process until specific process terminates

• Various options (see textbook)
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void fork11() {

    pid_t pid[N];

    int i;

    int child_status;


    for (i = 0; i < N; i++)

        if ((pid[i] = fork()) == 0)

            exit(100+i); /* Child */

    for (i = N-1; i >= 0; i--) {

        pid_t wpid = waitpid(pid[i], &child_status, 0);

        if (WIFEXITED(child_status))

            printf("Child %d terminated with exit status %d\n",

                   wpid, WEXITSTATUS(child_status));

        else

            printf("Child %d terminate abnormally\n", wpid);

    }

} forks.c
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  char *myargv[] = {“/bin/ls”, “-lt”, “/usr/include”};

  char *environ[] = {“USER=droh”, “PWD=“/usr/droh”};

  

  if ((pid = Fork()) == 0) {   /* Child runs program */                                               

      if (execve(myargv[0], myargv, environ) < 0) {                                                        

          printf("%s: Command not found.\n", myargv[0]);                                                 

          exit(1);                                                                                     

      }                                                                                                

  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

execve: Loading and Running Programs
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execve: Loading and Running Programs
•int execve(char *filename, char *argv[], char *envp[])

• Loads and runs in the current process:


• Executable  file filename

• Argument list argv


• By convention argv[0]==filename

• Environment variable list envp


• “name=value” strings (e.g., USER=droh)


• Overwrites code, data, and stack

• Retains PID, open files and signal context


• Called once and never returns

• …except if there is an error

18
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execve Example
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envp[n] = NULL
envp[n-1]

envp[0]
…

myargv[argc] = NULL
myargv[2]

myargv[0]
myargv[1]

“/bin/ls”
“-lt”
“/usr/include”

“USER=droh”

“PWD=/usr/droh”

environ

myargv

  if ((pid = Fork()) == 0) {   /* Child runs program */                                               

      if (execve(myargv[0], myargv, environ) < 0) {                                                        

          printf("%s: Command not found.\n", myargv[0]);                                                 

          exit(1);                                                                                     

      }                                                                                                

  }                                                                                                    

Executes “/bin/ls –lt /usr/include” in child process using 
current environment:

(argc == 3)
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Summary
• Processes


• At any given time, system has multiple active processes

• Only one can execute at a time on a single core, though

• Each process appears to have total control of  processor + private memory space


• Spawning processes

• Call fork

• One call, two returns


• Process completion

• Call exit

• One call, no return


• Reaping and waiting for processes

• Call wait or waitpid


• Loading and running programs

• Call execve (or variant)

• One call, (normally) no return

20
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Today
• Process Control

• Signals: The Way to Communicate with Processes

21
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Signals

• A signal is a small message that notifies a process that an 
event of some type has occurred in the system

• Sent from the OS kernel

• Could be requested by another process, by user, or automatically by 

the kernel

• Signal type is identified by small integer ID’s (1-30)

22

ID Name Default Action Corresponding Event
2 SIGINT Terminate User typed ctrl-c 
9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation
14 SIGALRM Terminate Timer signal
17 SIGCHLD Ignore Child stopped or terminated
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Signal Concepts: Sending a Signal
• Kernel sends (delivers) a signal to a destination process by 

updating some state in the context of the destination 
process


• Kernel sends a signal for one of the following reasons:

• Kernel has detected a system event such as:


• Exception: divide-by-zero (SIGFPE)

• Interrupt: user pressing Ctrl + C (SIGINT)

• The termination of a child process (SIGCHLD)


• Another process has invoked the kill system call to explicitly 
request the kernel to send a signal to the destination process.

• Note: kill doesn’t mean you are going to kill the target process. It is just a 

system call that allows you to send signals. Of course the signal you send 
could be SIGKILL.

23
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Signal Concepts: Receiving a Signal

• A destination process receives a signal when it is forced by 
the kernel to react in some way to the delivery of the signal


• Some possible ways to react:

• Ignore the signal (do nothing)

• Terminate the process

• Catch the signal by executing a user-level function called signal handler

24

(2) Control passes 

to signal handler 

(3) Signal  
handler runs

(4) Signal handler

returns to 

next instruction

IcurrInext

(1) Signal received 
by process 
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Sending Signals with /bin/kill Program

• /bin/kill program sends 
arbitrary signal to a process


• Examples

• /bin/kill –9 24818 

Send SIGKILL to process 24818

• /bin/kill itself doesn’t kill the 

process. 9 is the ID for the SIGKILL 
signal, which terminates the 
process

25

linux> ./forks 16 

Child1: pid=24818 pgrp=24817 

Child2: pid=24819 pgrp=24817 

 

linux> ps 

  PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh 

24818 pts/2    00:00:02 forks 

24819 pts/2    00:00:02 forks 

24820 pts/2    00:00:00 ps 



Carnegie Mellon

Process Groups

• Every process belongs to exactly one process group

26

Fore-

ground


job

Back-

ground

job #1

Back-

ground

job #2

Shell

Child Child

pid=10

pgid=10

Foreground 

process group 20

Background

process group 32

Background

process group 40

pid=20

pgid=20

pid=32

pgid=32

pid=40

pgid=40

pid=21

pgid=20

pid=22

pgid=20

getpgrp() 
Return process group of current process


setpgid() 
Change process group of a process
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Sending Signals with /bin/kill Program

• /bin/kill program 
sends arbitrary signal to a 
process or process group


• Examples

• /bin/kill –9 –24817 

Send SIGKILL to every process in 
process group 24817

27

linux> ./forks 16 

Child1: pid=24818 pgrp=24817 

Child2: pid=24819 pgrp=24817 

 

linux> ps 

  PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh 

24818 pts/2    00:00:02 forks 

24819 pts/2    00:00:02 forks 

24820 pts/2    00:00:00 ps 

linux> /bin/kill -9 -24817 

linux> ps  

  PID TTY          TIME CMD 

24788 pts/2    00:00:00 tcsh 

24823 pts/2    00:00:00 ps 

linux> 
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Sending Signals from the Keyboard
• Typing ctrl-c causes the kernel to send a SIGINT to every 

process in the foreground process group.

• SIGINT – default action is to terminate each process 


• Typing ctrl-z causes the kernel to send a SIGTSTP to 
every job in the foreground process group.

• SIGTSTP – default action is to stop (suspend) each process

28
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Example of ctrl-c and ctrl-z

29

bluefish> ./forks 17

Child: pid=28108 pgrp=28107

Parent: pid=28107 pgrp=28107


<types ctrl-z>

Suspended

bluefish> ps w

  PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh

28107 pts/8    T      0:01 ./forks 17

28108 pts/8    T      0:01 ./forks 17

28109 pts/8    R+     0:00 ps w


bluefish> fg

./forks 17

<types ctrl-c>

bluefish> ps w

  PID TTY      STAT   TIME COMMAND

27699 pts/8    Ss     0:00 -tcsh

28110 pts/8    R+     0:00 ps w


STAT (process state) Legend:


First letter:

S: sleeping

T: stopped

R: running


Second letter:

s: session leader

+: foreground proc group


See “man ps” for more 

details
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Sending Signals with kill Function

30

void fork12()

{

    pid_t pid[N];

    int i;

    int child_status;


    for (i = 0; i < N; i++)

        if ((pid[i] = fork()) == 0) {

            /* Child: Infinite Loop */

            while(1)

                ;

        }

    

    for (i = 0; i < N; i++) {

        printf("Killing process %d\n", pid[i]);

        kill(pid[i], SIGINT);

    }


    for (i = 0; i < N; i++) {

        pid_t wpid = wait(&child_status);

        if (WIFEXITED(child_status))

            printf("Child %d terminated with exit status %d\n",

                   wpid, WEXITSTATUS(child_status));

        else

            printf("Child %d terminated abnormally\n", wpid);

    }

}

forks.c
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Default Actions to Signals

• Each signal type has a predefined default action, which is 
one of:

• The process terminates

• The process stops until restarted by a SIGCONT signal

• The process ignores the signal

31
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Installing Signal Handlers

• The signal function modifies the default action associated 
with the receipt of signal signum:

• handler_t *signal(int signum, handler_t *handler)


• Different values for handler:

• SIG_IGN: ignore signals of type signum

• SIG_DFL: revert to the default action on receipt of signals of type signum

• Otherwise, handler is the address of a user-level function (signal handler)


• Called when process receives signal of type signum

• Referred to as “installing” the handler

• Executing handler is called “catching” or “handling” the signal

• When the handler executes its return statement, control passes 

back to instruction in the control flow of the process that was 
interrupted by receipt of the signal

32
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Signal Handling Example

33

void sigint_handler(int sig) /* SIGINT handler */

{

    printf("So you think you can stop the bomb with ctrl-c, do you?\n");

    sleep(2);

    printf("Well...");

    fflush(stdout);

    sleep(1);

    printf("OK. :-)\n");

    exit(0);

}


int main()

{

    /* Install the SIGINT handler */

    if (signal(SIGINT, sigint_handler) == SIG_ERR)

        unix_error("signal error");


    /* Wait for the receipt of a signal */

    pause();


    return 0;

} sigint.c
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Signals Handlers as Concurrent Flows

• A signal handler is a separate logical flow (not process) 
that runs concurrently with the main program

34

Process A 


while (1)

    ;

Process A


handler(){

    …

}

Process B

Time
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Nested Signal Handlers	
• Handlers can be interrupted by other handlers

35

(2) Control passes 
to handler S

 Main program

(5) Handler T
returns to 
handler S

Icurr

Inext

(1) Program 
catches signal s

 Handler S  Handler T

(3) Program 
catches signal t

(4)  Control passes 
to handler T

(6) Handler S
returns to 
main program

(7) Main program 
resumes 
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Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)

36

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

Time
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Receiving/Responding to Signals
• Kernel handles signals delivered to a process p when it 

switches to p from kernel mode to user mode (e.g., 
after a context switch)

37

Signal delivered

to process A

Signal received

by process A

Process A Process B

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext
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Pending and Blocked Signals

• A signal is pending if sent but not yet received

• There can be at most one pending signal of any particular type for a 

process

• That is: Signals are not queued


• If a process has a pending signal of type k, then subsequent 
signals of type k that are sent to that process are discarded


• A pending signal is received at most once


• A process can block/mask the receipt of certain signals

• Blocked signals can be delivered, i.e., in the pending state, but will not 

be received/responded to until the signal is unblocked

38
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Pending/Blocked Bits	

• Kernel maintains pending and masked bit vectors in the 
context of each process

• pending: represents the set of pending signals


• Kernel sets bit k in pending when a signal of type k is delivered

• Kernel clears bit k in pending when a signal of type k is received 


• masked: represents the set of blocked signals

• Can be set and cleared by using the sigprocmask function

• Also referred to as the signal mask.

39
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Receiving Signals

• Right before kernel is ready to pass control to process p

• Kernel computes the set of pending & nonmasked signals 

for process p (PNM set)

• If  (PNM is empty), i.e., no signal is pending & nonmasked


• No signals to respond to; simply pass control to next instruction in the 
logical flow for p


• Else

• Choose least nonzero bit k in pnm and force process p to receive 

signal k, i.e., by executing the corresponding signal handler

• Repeat for all nonzero k in pnm

• Pass control to next instruction in logical flow for p

40
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Blocking Signals

41

    sigset_t mask, prev_mask;


    sigemptyset(&mask);

    sigaddset(&mask, SIGINT);


    /* Block SIGINT and save previous blocked set */

    sigprocmask(SIG_BLOCK, &mask, &prev_mask);


    /* Code region that will not be interrupted by SIGINT */


    /* Restore previous blocked set, unblocking SIGINT */

    sigprocmask(SIG_SETMASK, &prev_mask, NULL);

• Explicit blocking and unblocking signal

• sigprocmask function

• sigemptyset – Create empty set

• sigfillset – Add every signal number to set

• sigaddset – Add signal number to set

• sigdelset – Delete signal number from set
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

42

static int x = 5;

void handler(int sig)

{

    x = 10;

}


int main(int argc, char **argv)

{

    int pid, y = 0;

    Signal(SIGCHLD, handler);


    if ((pid = Fork()) == 0) { /* Child */

        Execve("/bin/date", argv, NULL);

    }


    if (x == 5)

        y = x * 2; // You’d expect y == 10

    exit(0);

}

What if the following happens:

• Parent process executes and 

finishes if (x == 5)

• Context switch to child, 

which then terminates, sends 
a SIGCHLD signal


• Another context switch back 
to parent, and now the kernel 
needs to execute the 
SIGCHLD handler


• When return to parent 
process, y == 20!
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Safe Signal Handling

• Handlers are tricky because they are concurrent with main 
program and may share the same global data structures.

• Programmers have no control over the execution ordering between the 

main program and the signal handler, that is:

• when a signal happens/delivers (depends on user or other process)

• when the signal handler will be executed (depends on kernel)


• If not careful, shared data structures can be corrupted

43
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Fixing the Signal Handling Bug

44

static int x = 5;

void handler(int sig)

{

    x = 10;

}


int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, prev_all;

    sigfillset(&mask_all);

    signal(SIGCHLD, handler);


    if ((pid = Fork()) == 0) { /* Child */

        Execve("/bin/date", argv, NULL);

    }


    Sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

    if (x == 5)

        y = x * 2; // You’d expect y == 10

    Sigprocmask(SIG_SETMASK, &prev_all, NULL);


    exit(0);

}

• Block all signals before 
accessing a shared, 
global data structure.


• Can’t use a lock (later 
in this course)
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Async-Signal-Safety	

• Function is async-signal-safe if it either has no access to 
globally shared variables (a.k.a., reentrant) or is non-
interruptible by signals.


• Posix guarantees 117 functions to be async-signal-safe 

• Source: “man 7 signal”

• Popular functions on the list:


• _exit, write, wait, waitpid, sleep, kill

• Popular functions that are not on the list:


• printf,  sprintf, malloc, exit 

• Unfortunate fact: write is the only async-signal-safe output 

function
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