
CSC 252: Computer Organization 
 Spring 2025: Lecture 20 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Another Unsafe Signal Handler Example
• Assume a program wants to do the following:

• The parent creates multiple child processes

• When each child process is created, add the child PID to a

queue

• When a child process terminates, the parent process

removes the child PID from the queue

• One possible implementation:

• An array for keeping the child PIDs

• Use a loop to fork child, and add PID to the array after fork

• Install a handler for SIGCHLD in parent process

• The SIGCHLD handler removes the child PID

2

Carnegie Mellon

First Attempt
void handler(int sig)

{

 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */

 /* Delete the child from the job list */

 deletejob(pid);

 }

}

int main(int argc, char **argv)

{

 int pid;

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 /* Add the child to the job list */

 addjob(pid);

 }

 exit(0);

}

3

The following can happen:

• The first child runs, and

terminates

• Kernel sends SIGCHLD

• Context switch to parent,

which executes the SIGCHLD
handler before
addjob(pid) is executed

• The handler deletes the job,
which isn’t in the queue yet!

• The parent process resumes
and adds a terminated child
to job list

Carnegie Mellon

First Attempt
void handler(int sig)

{

 pid_t pid;

 while ((pid = wait(NULL)) > 0) { /* Reap child */

 /* Delete the child from the job list */

 deletejob(pid);

 }

}

int main(int argc, char **argv)

{

 int pid;

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 if ((pid = Fork()) == 0) { /* Child */

 Execve("/bin/date", argv, NULL);

 }

 /* Add the child to the job list */

 addjob(pid);

 }

 exit(0);

}

4

Key in this example: creating a
child and adding its PID to the
job list must be an atomic unit:
either both happen or neither
happen; there can’t be
anything else that separates
the two.

Carnegie Mellon

Second Attempt
void handler(int sig)

{

 sigset_t mask_all, prev_all;

 pid_t pid;

 sigfillset(&mask_all);

 while ((pid = wait(NULL)) > 0) {

 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

 deletejob(pid);

 sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

}

int main(int argc, char **argv)

{

 int pid;

 sigset_t mask_all, prev_all;

 sigfillset(&mask_all);

 signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 if ((pid = Fork()) == 0) {

 Execve("/bin/date", argv, NULL);

 }

 sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

 addjob(pid);

 sigprocmask(SIG_SETMASK, &prev_all, NULL);

 }

 exit(0);

}

5

Carnegie Mellon

Third Attempt (The Correct One)

6

int main(int argc, char **argv)

{

 int pid;

 sigset_t mask_all, mask_one, prev_one;

 Sigfillset(&mask_all);

 Sigemptyset(&mask_one);

 Sigaddset(&mask_one, SIGCHLD);

 Signal(SIGCHLD, handler);

 initjobs(); /* Initialize the job list */

 while (1) {

 Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

 if ((pid = Fork()) == 0) { /* Child process */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 Execve("/bin/date", argv, NULL);

 }

	 addjob(pid); /* Add the child to the job list */

 Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

 }

 exit(0);

}

Why this?

Thinking in Parallel is Hard

7

Maybe Thinking is Hard

Carnegie Mellon

Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered

8

Carnegie Mellon

Interrupts in a Processor

9

Processor

Chipset
Bus

ke
yb

oa
rd

di
sk

ne
tw

or
k

Interrupt

Signal

Lines

Carnegie Mellon

Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.

• Indicated by setting the processor’s interrupt pin

• Handler returns to “next” instruction

• Examples:

• Timer interrupt

• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs

• I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

10

Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:

• Traps
• Intentional

• Examples: system calls, breakpoint traps, special instructions

• Faults
• Unintentional but possibly recoverable

• Examples: page faults (recoverable), protection faults (the

infamous Segmentation Fault!) (unrecoverable in Linux), floating
point exceptions (unrecoverable in Linux)

• These exceptions will generate signals to processes

• Aborts

• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program through a SIGABRT signal

11

Carnegie Mellon

Each Exception Has a Handler
• Each type of event has a  

unique exception number k

• k = index into exception
table

• Exception table lives in
memory. Its start address is
stored in a special register

• Handler k is called each
time exception k occurs

12

0
1
2 ...

n-1

Exception

Table

Code for

exception handler 0

Code for

exception handler 1

Code for

exception handler 2

Code for

exception handler n-1

...

Exception

numbers

Carnegie Mellon

Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?

• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an
interrupt handler

• The interrupt handler, executed by the kernel, triggers certain piece of
the kernel, which generates the SIGINT signal, which is then delivered
to the target process

13

Carnegie Mellon

When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue

without resolving the exception (e.g., page fault)

• Maskable verses Unmaskable

• Interrupts can be individually masked (i.e., ignored by CPU)

• Synchronous exceptions are usually unmaskable

• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)

• Indicating a critical error has occurred, and that the system is

probably about to crash

14

Carnegie Mellon

Where Do You Restart?
• Interrupts/Traps

• Handler returns to the following instruction

• Faults

• Exception handler returns to the instruction that caused the
exception, i.e., re-execute it!

• Aborts

• Never returns to the program

15

Carnegie Mellon

Today	 	
• Virtual memory ideas

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation

16

Carnegie Mellon

Process Address Space

17

Kernel space

Memory-mapped region for

shared libraries

Run-time heap

(created by malloc)

User stack

(created at runtime)

Unused
0

%rsp

(stack

pointer)

Memory

invisible to
user code

brk

0x400000

Read/write data segment

(.data, .bss)

Read-only code segment

(.init, .text, .rodata)

Loaded from the
executable file Program

Counter

Carnegie Mellon

Memory
Process 1

Multiprocessing Illustration

18

CPU
Registers

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

Carnegie Mellon

Memory
Process 1

Problem 1: Space

19

Stack
Heap

Code
Data

Process 2
Stack
Heap

Code
Data

Process N
Stack
Heap

Code
Data

• Space:

• Each process’s address space is huge (64-bit): can memory hold it

(16GB is just 34-bit)?

• 2^48 bytes is 256 TB

• There are multiple processes, increasing the storage requirement

further

Carnegie Mellon

Recall: Memory Hierarchy

20

CPU

Registers

(DFF)

Cache

(SRAM)

Hard Disk/
SSD

Several
TBs

• Solution: store all the data in disk (several TBs typically), and
use memory only for most recently used data

• Of course if a process uses all its address space that won’t be enough, but usually a

process won’t use all 64 bits. So it’s OK.

• Challange: who is moving data back and forth between the DRAM/main
memory/physical memory and the disk?

• Ideally should be managed by the OS, not the programmer.

Main/Physical

Memory

(DRAM)

Several GBs

~1 ns 1-10 ns
100 ns

~ 10 us

Carnegie Mellon

• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but

there is one single physical memory!

• What if a malicious program steals/modifies data from your program?

• If the malicious program get the address of the memory that stores your
password, should it be able to access it? If not, how to prevent it?

• We need isolation.

Problem 2: Security

21

CPU Main/Physical

Memory

(DRAM)

Several GBs

Registers

(DFF)

Cache

(SRAM)

Hard Disk/
SSD

Several
TBs

Carnegie Mellon

• Different processes will have exclusive access to just one part of the
physical memory.

• This is called Segments.

• Need a base register and a bound register for each process. Not

widely used today. x86 still supports it (backward compatibility!)

• Fast but inflexible. Makes benign sharing hard.

One Way to Isolate: Segments

22

Main/Physical

Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

base 1

bound 1

base 2

bound 2

Carnegie Mellon

• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.

• Need to allow assigning discontinuous chunks of memory to
processes.

Problem 3: Fragmentation (with Segments)

23

Main/Physical

Memory Hard Disk/

SSD

Program 1

Program 2

Program 1

Program 2

128 MB

12 MB

12 MB

Carnegie Mellon

• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)

24

CPU

Registers

(DFF)

Cache

(SRAM)

Main/Physical

Memory Hard Disk/

SSD

Program 1
stdlib.so

Program 2
stdlib.so

stdlib.so

Carnegie Mellon

The Big Idea: Virtual Memory

25

Physical/Main

Memory

Process 1

Virtual Memory

of Process 1

Process 2

Virtual Memory
of Process 2

Hard Drive

…

…

1

2

3

4

99

100

…

101

102

103

104

105

199

200

201

202

203

204

205

…

Carnegie Mellon

A System Snapshot

26

Physical/Main

Memory

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

… 1

2

3

4

99

100

101

102

103

104

105

Virtual Memory
of Process 2

…

…

Virtual Memory

of Process 1

Data 1

Data 2

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Allow Using Discontinuous Allocation

27

Physical/Main

Memory

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

1

2

3

4

Data 1

Data 2

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

…

A

B

C

D

99

100

101

102

103

104

105

Carnegie Mellon

Page Table

28

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

…

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

99

100

101

102

103

104

105

Carnegie Mellon

Demand Paging (“Caching” Data in Memory)

29

Physical/Main

Memory

Unallocated

Data 1

Data X

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

Data X

…

…

…

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

Data X

2

99

100

101

102

103

104

105

Carnegie Mellon

Data 2

99

Prevent Unwanted Sharing

30

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Process 2

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

A

4

B

C

D

Page Table

of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…
Virtual Memory

of Process 2…

…

…

…

…

Data 3

…

Unallocated

…

…

…

Page Table

of Process 2

…

…
O

3

P

Unallocated

Q

R

4

…

…

…

…

O

P

Q

R

1

100

101

102

103

104

105

Carnegie Mellon

Enable Benign Sharing

31

Physical/Main

Memory

Unallocated

Data 1

…

Data 2

…

…

…

Process 1

Virtual Memory

of Process 1

Hard Drive

…

…

…

…

Data 3

Data 1

Data 2

Invalid

1

A

4

B

C

D

Page Table

of Process 1

1

2

3

4

A

B

C

D

99

100

101

102

103

104

105

…

…

…

…

…

…

…

…

O

P

Q

R

Data 2

99

Process 2

Virtual Memory
of Process 2…

…

Data 3

…

Unallocated

…

…

…

Page Table

of Process 2

…

…
O

3

P

Unallocated

Q

R

4

100

101

102

103

104

105

