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Another Unsafe Signal Handler Example
• Assume a program wants to do the following:


• The parent creates multiple child processes

• When each child process is created, add the child PID to a 

queue

• When a child process terminates, the parent process 

removes the child PID from the queue

• One possible implementation:


• An array for keeping the child PIDs

• Use a loop to fork child, and add PID to the array after fork

• Install a handler for SIGCHLD in parent process

• The SIGCHLD handler removes the child PID
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First Attempt
void handler(int sig)

{

    pid_t pid;


    while ((pid = wait(NULL)) > 0) { /* Reap child */

        /* Delete the child from the job list */

        deletejob(pid);

    }

}


int main(int argc, char **argv)

{

    int pid;


    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        if ((pid = Fork()) == 0) { /* Child */

            Execve("/bin/date", argv, NULL);

        }

        /* Add the child to the job list */

        addjob(pid);

    }

    exit(0);

}
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The following can happen:

• The first child runs, and 

terminates

• Kernel sends SIGCHLD

• Context switch to parent, 

which executes the SIGCHLD 
handler before 
addjob(pid) is executed


• The handler deletes the job, 
which isn’t in the queue yet!


• The parent process resumes 
and adds a terminated child 
to job list
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First Attempt
void handler(int sig)

{

    pid_t pid;


    while ((pid = wait(NULL)) > 0) { /* Reap child */

        /* Delete the child from the job list */

        deletejob(pid);

    }

}


int main(int argc, char **argv)

{

    int pid;


    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        if ((pid = Fork()) == 0) { /* Child */

            Execve("/bin/date", argv, NULL);

        }

        /* Add the child to the job list */

        addjob(pid);

    }

    exit(0);

}
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Key in this example: creating a 
child and adding its PID to the 
job list must be an atomic unit: 
either both happen or neither 
happen; there can’t be 
anything else that separates 
the two.
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Second Attempt
void handler(int sig)

{

    sigset_t mask_all, prev_all;

    pid_t pid;


    sigfillset(&mask_all);

    while ((pid = wait(NULL)) > 0) {

        sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

        deletejob(pid);

        sigprocmask(SIG_SETMASK, &prev_all, NULL);

    }

}

int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, prev_all;


    sigfillset(&mask_all);

    signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        if ((pid = Fork()) == 0) {

            Execve("/bin/date", argv, NULL);

        }

        sigprocmask(SIG_BLOCK, &mask_all, &prev_all);

        addjob(pid);

        sigprocmask(SIG_SETMASK, &prev_all, NULL);

    }

    exit(0);

}
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Third Attempt (The Correct One)
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int main(int argc, char **argv)

{

    int pid;

    sigset_t mask_all, mask_one, prev_one;


    Sigfillset(&mask_all);

    Sigemptyset(&mask_one);

    Sigaddset(&mask_one, SIGCHLD);

    Signal(SIGCHLD, handler);

    initjobs(); /* Initialize the job list */


    while (1) {

        Sigprocmask(SIG_BLOCK, &mask_one, &prev_one); /* Block SIGCHLD */

        if ((pid = Fork()) == 0) { /* Child process */

            Sigprocmask(SIG_SETMASK, &prev_one, NULL); /* Unblock SIGCHLD */

            Execve("/bin/date", argv, NULL);

        }

	 addjob(pid);  /* Add the child to the job list */

        Sigprocmask(SIG_SETMASK, &prev_one, NULL);  /* Unblock SIGCHLD */

    }

    exit(0);

}

Why this?



Thinking in Parallel is Hard
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Maybe Thinking is Hard
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Today
• Signals: The Way to Communicate with Processes

• Interrupts and exceptions: how signals are triggered
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Interrupts in a Processor
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Interrupts, a.k.a., Asynchronous Exceptions

• Caused by events external to the processor

• Events that can happen at any time. Computers have little control.

• Indicated by setting the processor’s interrupt pin

• Handler returns to “next” instruction


• Examples:

• Timer interrupt


• Every few ms, an external timer chip triggers an interrupt

• Used by the kernel to take back control from user programs


•  I/O interrupt from external device

• Hitting Ctrl-C at the keyboard

• Arrival of a packet from a network

• Arrival of data from a disk

10



Carnegie Mellon

Synchronous Exceptions
• Caused by events that occur as a result of executing an instruction:


• Traps 
• Intentional

• Examples: system calls, breakpoint traps, special instructions


• Faults 
• Unintentional but possibly recoverable 

• Examples: page faults (recoverable), protection faults (the 

infamous Segmentation Fault!) (unrecoverable in Linux), floating 
point exceptions (unrecoverable in Linux)


• These exceptions will generate signals to processes

• Aborts 

• Unintentional and unrecoverable

• Examples: illegal instruction, parity error, machine check

• Aborts current program through a SIGABRT signal
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Each Exception Has a Handler
• Each type of event has a  

unique exception number k


• k = index into exception 
table


• Exception table lives in 
memory. Its start address is 
stored in a special register


• Handler k is called each 
time exception k occurs
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Sending Signals from the Keyboard
• Can you guess how Ctrl + C might be implemented?


• Ctrl + C sends a keyboard interrupt to the CPU, which triggers an 
interrupt handler


• The interrupt handler, executed by the kernel, triggers certain piece of 
the kernel, which generates the SIGINT signal, which is then delivered 
to the target process
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When to Execute the Handler?
• Interrupts: when convenient. Typically wait until the current 

instructions in the pipeline are finished

• Exceptions: typically immediately as programs can’t continue 

without resolving the exception (e.g., page fault)

• Maskable verses Unmaskable


• Interrupts can be individually masked (i.e., ignored by CPU)

• Synchronous exceptions are usually unmaskable


• Some interrupts are intentionally unmaskable

• Called non-maskable interrupts (NMI)

• Indicating a critical error has occurred, and that the system is 

probably about to crash
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Where Do You Restart?
• Interrupts/Traps


• Handler returns to the following instruction

• Faults


• Exception handler returns to the instruction that caused the 
exception, i.e., re-execute it!


• Aborts

• Never returns to the program
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Today	 	
• Virtual memory ideas

• VM basic concepts and operation

• Other critical benefits of VM

• Address translation
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Process Address Space
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Memory
Process 1

Multiprocessing Illustration
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Memory
Process 1

Problem 1: Space
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• Space:

• Each process’s address space is huge (64-bit): can memory hold it 

(16GB is just 34-bit)?

• 2^48 bytes is 256 TB

• There are multiple processes, increasing the storage requirement 

further
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Recall: Memory Hierarchy
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• Different programs/processes will share the same physical memory

• Or even different uses. A CSUG machine is accessed by all students, but 

there is one single physical memory!

• What if a malicious program steals/modifies data from your program?


• If the malicious program get the address of the memory that stores your 
password, should it be able to access it? If not, how to prevent it? 


• We need isolation.

Problem 2: Security
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• Different processes will have exclusive access to just one part of the 
physical memory.


• This is called Segments.

• Need a base register and a bound register for each process. Not 

widely used today. x86 still supports it (backward compatibility!)

• Fast but inflexible. Makes benign sharing hard.

One Way to Isolate: Segments
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• Each process gets a continuous chunk of memory. Inflexible.

• What if a process requests more space than any continuous chunk in 

memory but smaller than the total free memory?

• This is called “fragmentation”; will talk about this more later.


• Need to allow assigning discontinuous chunks of memory to 
processes.

Problem 3: Fragmentation (with Segments)
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• Different programs/processes will share same data: files, libraries, etc.

• No need to have separate copies in the physical memory.

• Would be good to let other processes access part of the current’s 

process’ memory based on the “permission”.

Problem 4: Benign Sharing (with Segments)
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The Big Idea: Virtual Memory
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A System Snapshot
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Allow Using Discontinuous Allocation
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Page Table
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Demand Paging (“Caching” Data in Memory)
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Data 2

99

Prevent Unwanted Sharing
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Enable Benign Sharing
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