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Today
• Three Virtual Memory Optimizations


• TLB 
• Virtually-indexed, physically-tagged cache 
• Page the page table (a.k.a., multi-level page table) 

• Case-study: Intel Core i7/Linux example

!2



Carnegie Mellon

Speeding up Address Translation
• Problem: Every memory load/store requires two memory 

accesses: one for PTE, another for real

• The PTE access is kind of an overhead 
• Can we speed it up? 

• Page table entries (PTEs) are already cached in L1 data cache 
like any other memory data. But:

• PTEs may be evicted by other data references 
• PTE hit still requires a small L1 delay
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L1 
cache

Recall: Page Table is Cached
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Speeding up Translation with a TLB
• Solution: Translation Lookaside Buffer (TLB)


• Think of it as a dedicated cache for page table 
• Small set-associative hardware cache in MMU 
• Contains complete page table entries for a small number of pages
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Accessing the TLB
•MMU uses the Virtual Page Number portion of the virtual 

address to access the TLB:
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TLB Hit
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TLB Miss
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Today
• Three Virtual Memory Optimizations


• TLB 
• Virtually-indexed, physically-tagged cache 
• Page the page table (a.k.a., multi-level page table) 

• Case-study: Intel Core i7/Linux example
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Performance Issue in VM
• Address translation and cache accesses are serialized


• First translate from VA to PA 
• Then use PA to access cache 
• Slow! Can we speed it up?

!10

L1 
cache

CPU MMUVA
PA

Memory
PAPA


miss

Data

PA 

hit

Data

CPU Chip



Carnegie Mellon

Physical page 
number (PPN)

Cache Line 
Offset

Observe Address Translation
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Tag

Any Implications?
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Virtual page number 
(VPN) Page OffsetVirtual

Address

Cache Line 
Offset
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• Assuming 4K page size, cache line size is 16 bytes.

• Set Index = 8 bits. Can only have 256 Sets => Limit cache size

• Increasing cache size then requires increasing associativity


• Not ideal because that requires comparing more tags 
• Solutions?

12 bits

4 bits8 bits
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Tag

Any Implications?
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Virtual page number 
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•What if we use 9 bits for Set Index? More Sets now.

• How can this still work?

• The least significant bit in VPN and PPN must be the same

• That is: an even VA must be mapped to an even PA, and an odd 

VA must be mapped to an odd PA

12 bits

4 bits9 bits
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• Three Virtual Memory Optimizations
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Where Does Page Table Live?
• It needs to be at a specific location where we can find it


• In main memory, with its start address stored in a special 
register (PTBR) 

• Assume 4KB page, 48-bit virtual memory, each PTE is 8 Bytes

• 236 PTEs in a page table 
• 512 GB total size per page table??!! 

• Problem: Page tables are huge

• One table per process! 
• Storing them all in main memory wastes space
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Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are 

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data
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Effectively: A 2-Level Page Table
• Level 1 table:


• Always in physical memory at a known 
location. 

• Each L1 PTE points to the start address 
of a L2 page table. 

• Bring that table to memory on-demand. 
• Level 2 table:


• Each PTE points to an actual data page
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A Two-Level Page Table Hierarchy
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How to Access a 2-Level Page Table?
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How to Access a 2-Level Page Table?
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Translating with a k-level Page Table
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Intel Core i7 Memory System
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...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation
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Core i7 Level 4 Page Table Entries
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Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant 
fields: 

P: Child page is present in memory (1) or not (0) 
R/W: Read-only or read-write access permission for child page 

U/S: User or supervisor mode access 

WT: Write-through or write-back cache policy for this page 

A: Reference bit (set by MMU on reads and writes, cleared by software)  
D: Dirty bit (set by MMU on writes, cleared by software) 

Page physical base address: 40 most significant bits of physical page 
address (forces pages to be 4KB aligned) 

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263
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Today  
•Memory mapping

• Dynamic memory allocation

!26



Carnegie Mellon

Virtual Address Space of a Linux Process
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Memory mapped region  
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Memory Mapping For Sharing
•Multiple processes often share data


• Different processes that run the same code (e.g., shell) 
• Different processes linked to the same standard libraries 
• Different processes share the same file 

• It is wasteful to create exact copies of the share object

•Memory mapping allow us to easily share objects


• Different VM pages point to the same physical page/object
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Sharing Revisited: Shared Objects
• Process 1 maps the shared object. 

!29

Shared 
object

Physical 
memory

Process 1 
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Process 2 
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• The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.
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Sharing Revisited: Shared Objects
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Shared 
object
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memory

Process 1 
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Process 2 
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• Process 2 maps the shared object. • The kernel remembers 
that the object (backed 
by a unique file) is 
mapped by Proc. 1 to 
some physical pages.


• Now when Proc. 2 
wants to access the 
same object, the kernel 
can simply point the 
PTEs of Proc. 2 to the 
already-mapped 
physical pages.
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The Problem…
•What if Proc. 1 now wants to modify the shared object, but 

doesn’t want the modification to be visible to Proc. 2

• Simplest solution: always create duplicate copies of shared 

objects at the cost of wasting space. Not ideal.

• Idea: Copy-on-write (COW)


• First pretend that both processes will share the objects without 
modifying them. If modification happens, create separate copies.
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Private Copy-on-write (COW) Objects
• Two processes 

mapping a private 
copy-on-write 
(COW)  object. 


• Area flagged as 
private copy-on-
write (COW)


• PTEs in private 
areas are flagged 
as read-only
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Private  
copy-on-write object

Physical 
memory
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Process 2 
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Private Copy-on-write (COW) Objects
• Instruction writing to 

private page triggers 
page (protection) fault.


• Handler checks the area 
protection, and sees 
that it’s a COW object


• Handler then creates 
new R/W page. 


• Instruction restarts upon 
handler return. 


• Copying deferred as 
long as possible!
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User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)

•Map len bytes starting at offset offset of the file specified by 
file description fd, preferably at address start 

• start: may be NULL for “pick an address”
• prot: PROT_READ, PROT_WRITE, ...
• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)
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User-Level Memory Mapping
void *mmap(void *start, int len, 
           int prot, int flags, int fd, int offset)
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len bytes

start
(or address  

chosen by kernel)
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Example: Using mmap to Copy Files
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/* mmapcopy driver */ 
int main(int argc, char **argv) 
{ 
    struct stat stat; 
    int fd; 

    /* Check for required cmd line arg */ 
    if (argc != 2) { 
        printf("usage: %s <filename>\n", 
               argv[0]); 
        exit(0); 
    } 

    /* Copy input file to stdout */ 
    fd = Open(argv[1], O_RDONLY, 0); 
    Fstat(fd, &stat); 
    mmapcopy(fd, stat.st_size); 
    exit(0); 
}

• Copying a file to stdout without transferring data to user space

• i.e., no file data is copied to user stack

#include "csapp.h" 

void mmapcopy(int fd, int size) 
{ 

    /* Ptr to memory mapped area */ 
    char *bufp; 

    bufp = mmap(NULL, size,  
                PROT_READ, 
                MAP_PRIVATE,  
                fd, 0); 
    Write(1, bufp, size); 
    return; 
}

mmapcopy.c mmapcopy.c
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Today  
•Memory mapping

• Dynamic memory allocation


• Basic concepts 
• Implicit free lists
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Dynamic Memory Allocation 
• Programmers use dynamic 

memory allocators (such 
as malloc) to acquire VM 
at run time. 


• Dynamic memory 
allocators manage an area 
of process virtual memory 
known as the heap. 
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Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack
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The malloc/free Functions
#include <stdlib.h> 

void *malloc(size_t size) 
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno 

void free(void *p) 
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc 

Other functions

• calloc: Version of malloc that initializes allocated block to zero. 
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap
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malloc Example
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#include <stdio.h> 
#include <stdlib.h> 

void foo(int n) { 
    int i, *p; 

    /* Allocate a block of n ints */ 
    p = (int *) malloc(n * sizeof(int)); 
    if (p == NULL) { 
        perror("malloc"); 
        exit(0); 
    } 

    /* Initialize allocated block */ 
    for (i=0; i<n; i++) 
 p[i] = i; 

    /* Return allocated block to the heap */ 
    free(p); 
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 8 bytes
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!
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int* foo(int n) { 
  int i, *p; 

  p = (int *) malloc(n * sizeof(int)); 
  if (p == NULL) exit(0); 

  for (i=0; i<n; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(5); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p
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Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically 

allocating the space would be a waste.

•More importantly: access data across function calls. Variables 

on stack are destroyed when the function returns!!!
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int* foo() { 
  int i; 
  int p[5]; 

  for (i=0; i<5; i++) 
    p[i] = i; 

  return p; 
} 

void bar() { 
  int *p = foo(); 

  printf(“%d\n”, p[0]); 
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p


