
CSC 252: Computer Organization 
 Spring 2025: Lecture 22 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Today
• Three Virtual Memory Optimizations

• TLB
• Virtually-indexed, physically-tagged cache
• Page the page table (a.k.a., multi-level page table)

• Case-study: Intel Core i7/Linux example

!2

Carnegie Mellon

Speeding up Address Translation
• Problem: Every memory load/store requires two memory

accesses: one for PTE, another for real

• The PTE access is kind of an overhead
• Can we speed it up?

• Page table entries (PTEs) are already cached in L1 data cache
like any other memory data. But:

• PTEs may be evicted by other data references
• PTE hit still requires a small L1 delay

!3

Carnegie Mellon

L1
cache

Recall: Page Table is Cached

!4

CPU MMUVA

PTEA

PA
Memory

PAPA

miss

PTEA

miss

PTE

PTEA

hit

Data

PA

hit

PTEA

Data

PTECPU Chip

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

Carnegie Mellon

Speeding up Translation with a TLB
• Solution: Translation Lookaside Buffer (TLB)

• Think of it as a dedicated cache for page table
• Small set-associative hardware cache in MMU
• Contains complete page table entries for a small number of pages

!5

Datatagv

…
DatatagvSet 0

Datatagv DatatagvSet 1

Datatagv DatatagvSet T-1

Tag Set Index

Set Index
selects a set

Compare tag to
decide cache hit/miss

A Conventional
Data Cache

Carnegie Mellon

Accessing the TLB
•MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

!6

TLB tag (TLBT) TLB index (TLBI)
0p-1pn-1

Offset

Virtual Page Number

p+t-1p+t

PTEtagv

…
PTEtagvSet 0

PTEtagv PTEtagvSet 1

PTEtagv PTEtagvSet T-1

TLBI selects
the set

TLBT matches tag of
line within set

A Page Table
Cache

Virtual Page Number

Carnegie Mellon

TLB Hit

!7

MMU Cache/
Memory

CPU

CPU Chip

VA
1

PA
4

Data
5

A TLB hit eliminates a memory access

TLB

2
VPN

PTE
3

Carnegie Mellon

TLB Miss

!8

MMU Cache/
Memory

CPU VA

CPU Chip

1

2

PA
5

Data
6

TLB

VPN

PTEA
3

PTE
4

Carnegie Mellon

Today
• Three Virtual Memory Optimizations

• TLB
• Virtually-indexed, physically-tagged cache
• Page the page table (a.k.a., multi-level page table)

• Case-study: Intel Core i7/Linux example

!9

Carnegie Mellon

Performance Issue in VM
• Address translation and cache accesses are serialized

• First translate from VA to PA
• Then use PA to access cache
• Slow! Can we speed it up?

!10

L1
cache

CPU MMUVA
PA

Memory
PAPA

miss

Data

PA

hit

Data

CPU Chip

Carnegie Mellon

Physical page
number (PPN)

Cache Line
Offset

Observe Address Translation

!11

Virtual page number
(VPN) Page Offset

Page Offset

Virtual
Address

Physical
Address

Set IndexTag
L1

cache

Unchanged!!

Set
IndexTag

=
• Set Index + Cache Line Offset = Page Offset

• Indexing into cache in parallel with translation (TLB access)

• If TLB hits, can get the data back in one cycle

Virtually-Indexed,
Physically-Tagged

Cache

Carnegie Mellon

Tag

Any Implications?

!12

Virtual page number
(VPN) Page OffsetVirtual

Address

Cache Line
Offset

Set
Index

Physical
Address

• Assuming 4K page size, cache line size is 16 bytes.

• Set Index = 8 bits. Can only have 256 Sets => Limit cache size

• Increasing cache size then requires increasing associativity

• Not ideal because that requires comparing more tags
• Solutions?

12 bits

4 bits8 bits

Carnegie Mellon

Tag

Any Implications?

!13

Virtual page number
(VPN) Page OffsetVirtual

Address

Cache Line
Offset

Set
Index

Physical
Address

•What if we use 9 bits for Set Index? More Sets now.

• How can this still work?

• The least significant bit in VPN and PPN must be the same

• That is: an even VA must be mapped to an even PA, and an odd

VA must be mapped to an odd PA

12 bits

4 bits9 bits

Carnegie Mellon

Today
• Three Virtual Memory Optimizations

• TLB
• Virtually-indexed, physically-tagged cache
• Page the page table (a.k.a., multi-level page table)

• Case-study: Intel Core i7/Linux example

!14

Carnegie Mellon

Where Does Page Table Live?
• It needs to be at a specific location where we can find it

• In main memory, with its start address stored in a special
register (PTBR)

• Assume 4KB page, 48-bit virtual memory, each PTE is 8 Bytes

• 236 PTEs in a page table
• 512 GB total size per page table??!!

• Problem: Page tables are huge

• One table per process!
• Storing them all in main memory wastes space

!15

Carnegie Mellon

Solution: Page the Page Table
• Observation: Only a small number of pages (working set) are

accessed during a certain period of time, due to locality

• Put only the relevant page table entires in main memory

• Idea: Put page table in Virtual Memory and swap it just like data

!16

VM
PM

Virtual address

Carnegie Mellon

Effectively: A 2-Level Page Table
• Level 1 table:

• Always in physical memory at a known
location.

• Each L1 PTE points to the start address
of a L2 page table.

• Bring that table to memory on-demand.
• Level 2 table:

• Each PTE points to an actual data page

!17

Level 1
Table

...

Level 2
Tables

...

Carnegie Mellon

A Two-Level Page Table Hierarchy

!18

Level 1

page table

...

Level 2

page tables

VP 0
...

VP 1023
VP 1024

...
VP 2047

unallocated
pages

unallocated
pages

VP 9215

Virtual

memory

PTE 0
...

PTE 1023

PTE 0
...

PTE 1023

1023 null
PTEs

PTE 1023
(1K - 9)

null PTEs

PTE 0
PTE 1

PTE 2 (null)
PTE 3 (null)
PTE 4 (null)
PTE 5 (null)
PTE 6 (null)
PTE 7 (null)

PTE 8

32 bit addresses, 4KB pages, 4-byte PTEs

• Level 2 page table
size:

• 232 / 212 * 4 = 4 MB
• Level 1 page table

size:

• (232 / 212 * 4) / 212 *

4 = 4 KB

Carnegie Mellon

How to Access a 2-Level Page Table?

!19

Page table  
base register

(PTBR)

0p-1n-1
VPOVPN

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

page table

Carnegie Mellon

How to Access a 2-Level Page Table?

!20

Page table  
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

Level 1
page table

Level 2
page table

Carnegie Mellon

Translating with a k-level Page Table

!21

Page table  
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...

Level 1
page table

Level 2
page table

Level k
page table

Carnegie Mellon

Today
• Three Virtual Memory Optimizations

• TLB
• Virtually-indexed, physically-tagged cache
• Page the page table (a.k.a., multi-level page table)

• Case-study: Intel Core i7/Linux example

!22

Carnegie Mellon

Intel Core i7 Memory System

!23

L1 d-cache
32 KB, 8-way

L2 unified cache
256 KB, 8-way

L3 unified cache
8 MB, 16-way

(shared by all cores)

Main memory

Registers

L1 d-TLB
64 entries, 4-way

L1 i-TLB
128 entries, 4-way

L2 unified TLB
512 entries, 4-way

L1 i-cache
32 KB, 8-way

MMU
(addr translation)

Instruction
fetch

Core x4

DDR3 Memory controller
3 x 64 bit @ 10.66 GB/s

32 GB/s total (shared by all cores)

Processor package

QuickPath interconnect
4 links @ 25.6 GB/s each

To other
cores
To I/O
bridge

Carnegie Mellon

...

L1 TLB (16 sets, 4 entries/set)

End-to-End Core i7 Address Translation

!24

CPU

VPN VPO
36 12

PPN
40

TLB
hit

Physical
address

(PA)

PPO
12

TLBT TLBI
432

CT CO
40 6

CI
6

L2, L3, and
main memory

L1
miss

Virtual address (VA)
Result

32/64

L1
hit

...

L1 d-cache
(64 sets, 8 lines/set)

VPN1 VPN2
99

PTE

CR3

Page tables

TLB
miss

VPN3 VPN4
99

PTE PTE PTE

Carnegie Mellon

Core i7 Level 4 Page Table Entries

!25

Page physical base address Unused G D A CD WT U/S R/W P=1

Each entry references a 4K child page. Significant
fields:

P: Child page is present in memory (1) or not (0)
R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page
address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available for OS (page location on disk) P=0

526263

Carnegie Mellon

Today
•Memory mapping

• Dynamic memory allocation

!26

Carnegie Mellon

Virtual Address Space of a Linux Process

!27

Kernel code and data

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)
Initialized data (.data)

Uninitialized data (.bss)

User stack

0

%rsp

Process
virtual
memory

brk

Physical memoryIdentical for
each process

Process-specific
data

 structs (ptables,
task and mm structs,

kernel stack)
Kernel
virtual
memory

0x00400000

Different for
each process

Carnegie Mellon

Memory Mapping For Sharing
•Multiple processes often share data

• Different processes that run the same code (e.g., shell)
• Different processes linked to the same standard libraries
• Different processes share the same file

• It is wasteful to create exact copies of the share object

•Memory mapping allow us to easily share objects

• Different VM pages point to the same physical page/object

!28

Carnegie Mellon

Sharing Revisited: Shared Objects
• Process 1 maps the shared object.

!29

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

• The kernel remembers
that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.

Carnegie Mellon

Sharing Revisited: Shared Objects

!30

Shared
object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

• Process 2 maps the shared object. • The kernel remembers
that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.

• Now when Proc. 2
wants to access the
same object, the kernel
can simply point the
PTEs of Proc. 2 to the
already-mapped
physical pages.

Carnegie Mellon

The Problem…
•What if Proc. 1 now wants to modify the shared object, but

doesn’t want the modification to be visible to Proc. 2

• Simplest solution: always create duplicate copies of shared

objects at the cost of wasting space. Not ideal.

• Idea: Copy-on-write (COW)

• First pretend that both processes will share the objects without
modifying them. If modification happens, create separate copies.

!31

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Two processes

mapping a private
copy-on-write
(COW) object.

• Area flagged as
private copy-on-
write (COW)

• PTEs in private
areas are flagged
as read-only

!32

Private
copy-on-write object

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

 Private
copy-on-write
area

Carnegie Mellon

Private Copy-on-write (COW) Objects
• Instruction writing to

private page triggers
page (protection) fault.

• Handler checks the area
protection, and sees
that it’s a COW object

• Handler then creates
new R/W page.

• Instruction restarts upon
handler return.

• Copying deferred as
long as possible!

!33

Physical
memory

Process 1
virtual memory

Process 2
virtual memory

Copy-on-write

Write to
private

COW page

Private
copy-on-write object

Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

•Map len bytes starting at offset offset of the file specified by
file description fd, preferably at address start

• start: may be NULL for “pick an address”
• prot: PROT_READ, PROT_WRITE, ...
• flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

• Return a pointer to start of mapped area (may not be start)

!34

Carnegie Mellon

User-Level Memory Mapping
void *mmap(void *start, int len,
 int prot, int flags, int fd, int offset)

!35

len bytes

start
(or address

chosen by kernel)

Process virtual memoryDisk file specified by
file descriptor fd

len bytes

offset
(bytes)

0 0

Carnegie Mellon

Example: Using mmap to Copy Files

!36

/* mmapcopy driver */
int main(int argc, char **argv)
{
 struct stat stat;
 int fd;

 /* Check for required cmd line arg */
 if (argc != 2) {
 printf("usage: %s <filename>\n",
 argv[0]);
 exit(0);
 }

 /* Copy input file to stdout */
 fd = Open(argv[1], O_RDONLY, 0);
 Fstat(fd, &stat);
 mmapcopy(fd, stat.st_size);
 exit(0);
}

• Copying a file to stdout without transferring data to user space

• i.e., no file data is copied to user stack

#include "csapp.h"

void mmapcopy(int fd, int size)
{

 /* Ptr to memory mapped area */
 char *bufp;

 bufp = mmap(NULL, size,
 PROT_READ,
 MAP_PRIVATE,
 fd, 0);
 Write(1, bufp, size);
 return;
}

mmapcopy.c mmapcopy.c

Carnegie Mellon

Today
•Memory mapping

• Dynamic memory allocation

• Basic concepts
• Implicit free lists

!37

Carnegie Mellon

Dynamic Memory Allocation
• Programmers use dynamic

memory allocators (such
as malloc) to acquire VM
at run time.

• Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

!38

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

User stack

Top of heap
 (brk ptr)

Carnegie Mellon

The malloc/free Functions
#include <stdlib.h>

void *malloc(size_t size)
• Successful:

• Returns a pointer to a memory block of at least size bytes 
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• If size == 0, returns NULL
• Unsuccessful: returns NULL (0) and sets errno

void free(void *p)
• Returns the block pointed at by p to pool of available memory
• p must come from a previous call to malloc or realloc

Other functions

• calloc: Version of malloc that initializes allocated block to zero.
• realloc: Changes the size of a previously allocated block.
• sbrk: Used internally by allocators to grow or shrink the heap

!39

Carnegie Mellon

malloc Example

!40

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
 int i, *p;

 /* Allocate a block of n ints */
 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) {
 perror("malloc");
 exit(0);
 }

 /* Initialize allocated block */
 for (i=0; i<n; i++)
 p[i] = i;

 /* Return allocated block to the heap */
 free(p);
}

Heap (via malloc)

Program text (.text)
Initialized data (.data)
Uninitialized data (.bss)

Stack
ip n

N * 8 bytes

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!41

int* foo(int n) {
 int i, *p;

 p = (int *) malloc(n * sizeof(int));
 if (p == NULL) exit(0);

 for (i=0; i<n; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo(5);

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

n

bar Stack
p

Carnegie Mellon

Why Do We Need Dynamic Allocation?
• Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

•More importantly: access data across function calls. Variables

on stack are destroyed when the function returns!!!

!42

int* foo() {
 int i;
 int p[5];

 for (i=0; i<5; i++)
 p[i] = i;

 return p;
}

void bar() {
 int *p = foo();

 printf(“%d\n”, p[0]);
}

Heap (via malloc)

foo Stack
ip

N * 8 bytes

bar Stack
p

