CSC 252: Computer Organization
Spring 2025: Lecture 22

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Today

* Three Virtual Memory Optimizations
e TLB

Speeding up Address Translation

* Problem: Every memory load/store requires two memory
accesses: one for PTE, another for real

e The PTE access is kind of an overhead
e Can we speed it up?

e Page table entries (PTEs) are already cached in L1 data cache
like any other memory data. But:

« PTEs may be evicted by other data references
« PTE hit still requires a small L1 delay

CPU Chip

CPU

PTE

VA

MMU

PTEA

Recall: Page Table is Cached

PA

PTEA
hit

PTEA
miss

PA
miss

PA
hit

PTE

PTEA

PA

Data

Data

L1
cache

Memory

VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address

4

Speeding up Translation with a TLB

* Solution: Translation Lookaside Buffer (TLB)
e Think of it as a dedicated cache for page table
« Small set-associative hardware cache in MMU
« Contains complete page table entries for a small number of pages

Tag Set Index
Compare tag to
decide cache hit/miss
W
Set0 ||v] | tag | | Data v| | tag | | Data
Set Index
selects a set
Set1 [|v] | tag | | Data v| | tag | | Data <
SetT-1 ||v]| | tag | | Data v| | tag | | Data A Conventional

Data Cache

Accessing the TLB

* MMU uses the Virtual Page Number portion of the virtual

address to access the TLB:

Virtual Page Number

A —

TLBT matches tag of — —~
line within set n-1 pit pit-1 p_p-1 0
Virtual Page Number Offset
Set0 |[[v]| [tag | | PTE v| | tag | [PTE
TLBI selects
a2 the set
Set1 ||v]| [tag | | PTE v|] | tag | | PTE <
SetT-1 |[v] [tag] [_PTE v] [tag | [_PTE A Page Table

Cache

TLB Hit

CPU Chip —F
9 PTE
VPN e
3 PA
CPU > MMU
T 4
Data
(5

A TLB hit eliminates a memory access

Cache/
Memory

TLB Miss

CPU Chip —
0
(2] PTE
VPN
g 3
PTEA
CPU > MMU Cache/
PA | Memory
(5

Data

Today

* Three Virtual Memory Optimizations

e Virtually-indexed, physically-tagged cache

Performance Issue in VM

* Address translation and cache accesses are serialized
 First translate from VA to PA
e Then use PA to access cache
e Slow! Can we speed it up?

CPU Chip

CpPU VA | MMU Memory
f PA PA PA

miss

PA Data
hit “

L1
Data cache

Observe Address Translation

Virtual
Address

Physical
Address

Virtual page number

(VPN)

Page Offset

l Unchanged!!

Physical page

number (PPN) Fege Qilies
T Set Cache Line
d Index Offset

Virtually-Indexed,
Physically-Tagged
Cache

L1
cache

e Set Index + Cache Line Offset = Page Offset

e Indexing into cache in parallel with translation (TLB access)

e |f TLB hits, can get the data back in one cycle

1

Any Implications?

+— 12Dbits —>

Virtual Virtual page number
Address (VPN) Page Offset
8 bits 4 bits
> = >
Physical T Set Cache Line
Address J Index Offset

* Assuming 4K page size, cache line size is 16 bytes.
e Set Index = 8 bits. Can only have 256 Sets => Limit cache size

* Increasing cache size then requires increasing associativity
* Not ideal because that requires comparing more tags

e Solutions?

Any Implications?

+— 12Dbits —>

Virtual Virtual page number
Address (VPN) Page Offset
9 bits 4 bits
> > < >
Physical - Set Cache Line
Address J Index Offset

e \What if we use 9 bits for Set Index? More Sets now.
e How can this still work?
* The least significant bit in VPN and PPN must be the same

* That is: an even VA must be mapped to an even PA, and an odd
VA must be mapped to an odd PA

Today

* Three Virtual Memory Optimizations

e Page the page table (a.k.a., multi-level page table)

14

Where Does Page Table Live?

* |t needs to be at a specific location where we can find it

* In main memory, with its start address stored in a special
register (PTBR)

 Assume 4KB page, 48-bit virtual memory, each PTE is 8 Bytes
» 236 PTES in a page table
* 512 GB total size per page table??!!
e Problem: Page tables are huge
* One table per process!
e Storing them all in main memory wastes space

15

Solution: Page the Page Table

* Observation: Only a small number of pages (working set) are
accessed during a certain period of time, due to locality

e Put only the relevant page table entires in main memory
* |dea: Put page table in Virtual Memory and swap it just like data
VM

PM

Virtual address

—
%

Effectively: A 2-Level Page Table

* Level 1 table: Level 2
. . Tables
e Always in physical memory at a known —
location.
e Each L1 PTE points to the start address
Level 1
of a L2 page table. Table

« Bring that table to memory on-demand. 7] _—
e Level 2 table:
» Each PTE points to an actual data page

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
/ VPO
PTE0 |— | _PTEO
VP 1023
PTE1 VP 1024
PTE 2 (null) PTE 1023
PTE 3 (null) ;
VP 2047
PTE 5 (null)
PTE 7 (null) junallocated
pages
PTE 8
1023 null
(1K - 9) PTEs
null PTEs
. PTE 1023 lunallocated
\ pages
VP 9215

32 bit addresses, 4KB pages, 4-byte PTEs

* | evel 2 page table
size:
¢ 232/212% 4 = 4 VB
e L evel 1 page table
size:
e (282/212% 4) /212 *
4 =4 KB

18

How to Access a 2-Level Page Table?

Page table
base register
(PTBR)

n-1 VIRTUAL ADDRESS o1 0

VPN VPO

page table
>
—{ PPN |} —

m'1 v p'1 v 0

PPN PPO

PHYSICAL ADDRESS

How to Access a 2-Level Page Table?

Page table
base register
(PTBR)
-1 VIRTUAL ADDRESS o1 0
VPN 1 VPN 2 VPO
Level 1 Level 2
page table page table
S >
" PPN} —
m'1 v p'1 v 0
PPN PPO

PHYSICAL ADDRESS

20

Translating with a k-level Page Table

Page table
base register
(PTBR)
n-1 VIRTUAL ADDRESS o 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k
page table page table page table
> > >
—
" —{ PPN |}—
m-1 v p'1 v 0
PPN PPO

PHYSICAL ADDRESS

21

Today

* Case-study: Intel Core i7/Linux example

22

Intel Core i7 Memory System

Processor package

' Core x4

| S ‘Instructiow MMU |

< fetch (addr translation)

L1 d-cache L1 i-cache L1 d-TLB L1i-TLB

: 32 KB,‘ 8-way 32 KB, 8-way 64 entrig‘s, 4-way | (128 entries, 4-way !

i L2 unified cache L2 unified TLB |

| 256 KB, 8-way _ 512 entries, 4-way |

To othel
! QuickPath interconnect Ly cores
4 links @ 25.6 GB/seach| | ' 1,110
i ' bridge
L3 unified cache DDR3 Memory controller

! 8 MB, 16-way) ” 3 x 64 bit @ 10.66 GB/s !

i (shared by all cores) 32 GB/s total (shared by all cores) i

Main memory

23

End-to-End Core i7 Address Translation

CPU

32/64

VPO,

Virtual address (VA)
12

32T4

L1 TLB (16 sets, 4 entries/set)

9 9

—

TLBT|TLBI
|
TLB
TLB hit
miss N | |

9

VPN2|VPN3 |VPN4

]

—PTE

el

PTE

PTE

40

Result L2, L3, and
main memory
L1 L1
hit miss

L1 d-cache
(64 sets, 8 lines/set)

PPN

12
PPO| ==p

Page tables

Physical
address
(PA)

Core i7 Level 4 Page Table Entries

63 62 52 51 12 11 9 8 7 6 5 4 3 2 1 0
XD | Unused Page physical base address | Unused | G D| A |CD|WT|U/S R/W|P=1
Available for OS (page location on disk) P=0

Each entry references a 4K child page. Significant
fields:

P: Child page is present in memory (1) or not (0)

R/W: Read-only or read-write access permission for child page

U/S: User or supervisor mode access

WT: Write-through or write-back cache policy for this page

A: Reference bit (set by MMU on reads and writes, cleared by software)
D: Dirty bit (set by MMU on writes, cleared by software)

Page physical base address: 40 most significant bits of physical page
address (forces pages to be 4KB aligned)

XD: Disable or enable instruction fetches from this page.

25

Today

* Memory mapping

26

Virtual Address Space of a Linux Process

\

NG

>

: Process-specific
data
Different for’ structs (ptables,
each process | |task and mm structs,
- kernel stack)
Identical for Physical memory
each process Kernel code and data
%rSp —» User* stack
Memory mapped region
for shared libraries
brk _, f
Runtime heap (maIIoc)I
Uninitialized data (.bss)
Initialized data (.data)
0x00400000 —_Program text (.text)

0

Kernel
virtual
memory

Process
virtual
memory

27

Memory Mapping For Sharing

* Multiple processes often share data
e Different processes that run the same code (e.g., shell)
* Different processes linked to the same standard libraries
 Different processes share the same file
* |t is wasteful to create exact copies of the share object
* Memory mapping allow us to easily share objects
* Different VM pages point to the same physical page/object

28

Sharing Revisited: Shared Objects

* Process 1 maps the shared object. ® The kernel remembers
that the object (backed

Process 1 Physical Process 2 by a unique file) is
virtual memory memory virtual memory mapped by Proc. 1 to
some physical pages.
Shared

object

29

Sharing Revisited: Shared Objects

* Process 2 maps the shared object.

Process 1
virtual memory

Physical

memory

Shared
object

Process 2
virtual memory

e The kernel remembers

that the object (backed
by a unique file) is
mapped by Proc. 1 to
some physical pages.
Now when Proc. 2
wants to access the
same object, the kernel
can simply point the
PTEs of Proc. 2 to the
already-mapped
physical pages.

30

The Problem...

* What if Proc. 1 now wants to modify the shared object, but
doesn’t want the modification to be visible to Proc. 2

e Simplest solution: always create duplicate copies of shared
objects at the cost of wasting space. Not ideal.

e |[dea: Copy-on-write (COW)

 First pretend that both processes will share the objects without
modifying them. If modification happens, create separate copies.

31

Private Copy-on-write (COW) Objects

* TWO processes
mapping a private

Process 1 Physical Process 2 copy-on-write
virtual memory memory virtual memory (COW) object
e Area flagged as
. private copy-on-
kT Private write (COW)
s } :‘r’g@“""’"te e PTEs in private
areas are flagged
as read-only
Private

copy-on-write object

32

Private Copy-on-write (COW) Objects

Process 1
virtual memory

Physical

memory

=~
-
-
-
-

=~
-
-
-
-

Private

copy-on-write object

Process 2
virtual memory

._ Copy-on-write

— /\

l¢

Write to
private
COW page

e Instruction writing to
private page triggers
page (protection) fault.

e Handler checks the area

protection, and sees
that it’s a COW object

e Handler then creates
new R/W page.

e |nstruction restarts upon
handler return.

e Copying deferred as
long as possible!

33

User-Level Memory Mapping

void *mmap (void *start, int len,

int prot, int flags, int fd, int offset)

e Map len bytes starting at offset offset of the file specified by
file description £d, preferably at address start

e start: may be NULL for “pick an address”
« prot: PROT_READ, PROT_WRITE, ...

« flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED, ...

e Return a pointer to start of mapped area (may not be start)

34

User-Level Memory Mapping

void *mmap (void *start, int len,
int prot, int flags, int fd, int offset)

------------------------- 3
.. ren bytes
B S
...................................... e
1en bytes < Chosen by kernel)
offset —| [
(bytes)
0 0
Disk file specified by Process virtual memory

file descriptor £4

35

Example: Using mmap to Copy Files

* Copying a file to stdout without transferring data to user space
* |.e., no file data is copied to user stack

#include "csapp.h"

void mmapcopy(int fd, int size)

{

/* Ptr to memory mapped area */
char xbufp;

bufp = mmap(NULL, size,

PROT_READ,
MAP_PRIVATE,
fd, 0);
Write(1l, bufp, size);
return;
}
mmapcopy.c

/* mmapcopy driver x/
int main(int argc, char xxargv)

{

struct stat stat;
int fd;

/* Check for required cmd line arg */
if (argc !'= 2) {
printf("usage: %s <filename>\n",
argv[o]);
exit(0);
}

/* Copy input file to stdout x/
fd = Open(argv[1l], O_RDONLY, 0);
Fstat(fd, &stat);

mmapcopy(fd, stat.st_size);
exit(0);

mmapcopy.c

36

Today

e Dynamic memory allocation
e Basic concepts

37

Dynamic Memory Allocation

* Programmers use dynamic
memory allocators (such
as malloc) to acquire VM

at run time.

e Dynamic memory
allocators manage an area
of process virtual memory
known as the heap.

User stack

2 ¥

Top of heap

Heap (viamalloc)

“— (brk ptr)

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)

38

The malloc/free Functions

#include <stdlib.h>

void *malloc(size t size)
» Successful:

« Returns a pointer to a memory block of at least size bytes
aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

e If size == 0, returns NULL
« Unsuccessful: returns NULL (0) and sets errno

vold free(void *p)
« Returns the block pointed at by p to pool of available memory
« p must come from a previous calltomalloc or realloc

Other functions
e calloc: Version of malloc that initializes allocated block to zero.

e realloc: Changes the size of a previously allocated block.
« sbrk: Used internally by allocators to grow or shrink the heap

39

malloc Example

#include <stdio.h>
#include <stdlib.h>

void foo(int n) {
int 1, *xp;

/* Allocate a block of n ints x/
p = (int *x) malloc(n x sizeof(int));
if (p == NULL) {
perror("malloc");
exit(0);
¥

/* Initialize allocated block x/
for (i=@; i<n; i++)
pli]l = 1i;

/* Return allocated block to the heap *x/
free(p);

Heap (via malloc)

N * 8 bytes

Uninitialized data (.bss)

Initialized data (.data)

Program text (. text)

40

Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically
allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intiﬁtfoiO(igF n) { bar Stack
B
p = (int %) malloc(n * sizeof(int)); -
if (p == NULL) exit(Q);

for (i=@; i<n; i++)
plil = 1i;

return p;

b Heap (via malloc)
void bar() {

int = f 5);
int xp 00(5) N*8 bytes
printf(“sd\n”, plo]);

}

Why Do We Need Dynamic Allocation?

* Some data structures’ size is only known at runtime. Statically

allocating the space would be a waste.

* More importantly: access data across function calls. Variables
on stack are destroyed when the function returns!!!

intx foo() {
int 1i;
int p[5];

for (i=@; i<5; i++)
pli]l = 1i;
return p;

¥

void bar() {
int *p = foo();

printf(“sd\n”, pl0]);
}

bar Stack
P

Heap (via malloc)

42

