CSC 252: Computer Organization
Spring 2025: Lecture 24

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Keeping Track of Free Blocks

e Method 1: Implicit list using length—links all blocks

* Method 2: Explicit list among the free blocks using pointers

.

5 - 4 6 2

* Method 3: Segregated free list
« Different free lists for different size classes

Segregated List (Seglist) Allocators

1-2

5-8

9-inf

—>

—>

—>

—>

—>

®* EFach size class of blocks has its own free list

* Organize the Seglist

e (Often have separate classes for each small size
e [or larger sizes: One class for each two-power size (why?)

Seglist Allocator

* Given an array of free lists, each one for some size class
 To allocate a block of size n:
« Search appropriate free list for block of size m > n
« If an appropriate block is found:
« Split block and place fragment on appropriate list (optional)
« If no block is found, try next larger class
« Repeat until block is found
* |f no block is found:
« Request additional heap memory from OS (using sbrk ())
« Remember heap is in VM, so request heap memory in pages
 Allocate block of n bytes from this new memory
« Place remainder as a single free block in largest size class.
* To free a block:
« Coalesce and place on appropriate list

Advantages of Seglist allocators

* Higher throughput

« Constant time allocation and free for requests that have a dedicated
free list (most of the cases)

* |og time for power-of-two size classes (searching the lists)

» Better memory utilization

« First-fit search of segregated free list approximates a best-fit search
of entire heap.

« Extreme case: Giving each block its own size class is equivalent to
best-fit.

Explicit/Implicit Memory Management

* So far we have been talking about explicitly memory
management: programmers explicitly calling malloc/free (C/C++)

* Downside: potential memory leaks

void foo () {
int *p = malloc(128);
p = malloc(32) ;
return; /* both blocks are now garbage */

}

e Alternative: implicit memory management; the programmers never
explicitly request/free memory

e Common in many dynamic languages:
* Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica
e The key: Garbage collection

* Automatic reclamation of heap-allocated storage—application
never has to free

Garbage Collection

* How does the memory manager know when certain memory
blocks can be freed?

e |f a block will never be used in the future. How do we know that?

 In general we cannot know what is going to be used in the future
since it depends on program’s future behaviors

« But we can tell that certain blocks cannot possibly be used if
there are no pointers to them

« Garbage collection is essentially to obtain all reachable blocks
and discard unreachable blocks.

Memory as a Graph

* We view memory as a directed graph
« Each block is a node in the graph
« Each pointer is an edge in the graph

» Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

Root nodes O O O
\

Heap nodes /
|
O
/ N Oﬁz 5

O Reachable

Not-reachable
(garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (cannot be needed by the application)
8

Mark and Sweep Collecting

* |dea:
« Use extra mark bit in the header to indicate if a block is reachable
« Mark: Start at roots and set mark bit on each reachable block
« Sweep: Scan all blocks and free blocks that are not marked

root
Note: arrows here
denote memory refs,
\4 not free list ptrs.

I_ free | free

Mark bit set

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is _ptr(p)) return;
if (markBitSet(p)) return;
setMarkBit (p) ;
for (i=0; i < length(p), i++)
mark (p[i]) ;
return;

//
//
//
//
//

do nothing if not pointer
check if already marked
set the mark bit
call mark on all words

in the block

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p):;

10

Conservative Mark & Sweep in C

* Garbage Collection in C is tricky.

e How do you know a pointer is a pointer? After all, a pointer is just
a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

* Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

* C pointers can point to the middle of a block. How do you find the
header of a block?

« Can use a balanced binary tree to keep track of all allocated blocks (key
is start-of-block)
ptr

Header Data

Left: smaller addresses
—L\ Right: larger addresses

Size

Left Right

1

Potential GC Implementations (in C)

e Can build on top of malloc/free function
e Call malloc until you run out of space. Then malloc will call GC.

e Stop-the-world GC. When performing GC, the entire program stops.
Some calls to malloc will take considerably longer than others.

Hidden From Programmers

Program —> malloc —'": Garba.ge _’ free
' Collection

~ L4

e To minimize main application (called mutator) pause time:
e [ncremental GC: Examine a small portion of heap every GC run
e Concurrent GC: Run GC service in a separate process/thread

12

Garbage Collection Implications

* GC is a great source of performance non-determinisms
» Generally can’t predict when GC will happen

Stop-the-world GC makes program periodically unresponsive
Concurrent/Incremental GC helps, but still has performance impacts

Bad for real-time systems: think of a self-driving car that needs to
decide whether to avoid a pedestrian but a GC kicks in...

Bad for server/cloud systems: GC is a great source of tail latency

response time (ms)

Iy m"m“mmmmm

13

Classical GC Algorithms

* Mark-and-sweep collection (McCarthy, 1960)

e Mark-sweep-compact collection (Styger, 1967)
e After M&S, compact allocated blocks to consecutive memory region.

* Reduce external fragmentation. Allocation is also easier.

O_Ot
N\

Before mark |_‘|\/|J,~ |

—

After mark

—

¢

After sweep | |

ma
I

free

free

A

[

0

After compact | __

¢ | free

free

Mark bit set

14

Classical GC Algorithms

* Mark-and-sweep collection (McCarthy, 1960)
e Mark-sweep-compact collection (Styger, 1967)

* Mark-copy collection (Minsky, 1963)
« After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.
* Generational Collectors (Lieberman and Hewitt, 1983)

« Observation: most allocations become garbage very soon (“infant
mortality”); others will survive for a long time.

« Wasteful to scan long-lived objects every collection time

« |dea: divide heap into two generations, young and old. Allocate into
young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

* Question: Can any of these algorithms be used for GC in C?

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

15

Classical GC Algorithms

* All the GC algorithms described so far are tracing-based
e Start from the root pointers, trace all the reachable objects
* Need graph traversal. Different to implement.
e Reference counting (Collins, 1960)
* Keep a counter for each object
* Increment the counter if there is a new pointer pointing to the object
* Decrement the counter if a pointer is taken off the object
* \When the counter reaches zero, collect the object
e Advantages of Reference Counting
e Simpler to implement
» Collect garbage objects immediately; generally less long pauses
* Disadvantages of Reference Counting D:D

* A naive implementation can’t deal with self-referencing
* A heterogeneous approach (RC + tracing) is often used

16

Scope of CSC 252

Problem

Algorithm

Program

Instruction Set
Architecture

Microarchitecture

Circuit

17

The Most Important Take Away of 252

* “There is no magic.”
e Computer systems are engineering work, not science, so:

* \We know exactly how things work because we build them
(unlike natural sciences)

* Every thing can be derived from first principles. Trust your
logical reasoning.

18

The Second Most Important Take Away of 252

e “Things don’t have to be this way.”

e As long as you don’t violate physics, you can design a computer
however you want.

* But every design decision you make usually involves certain trade-
offs. Be clear what your design goal is.

19

The Third Most Important Take Away of 252

e Virtual all computer system design practices follow a small set of
basic principles.

e |t is these basic principles that are important, not the practices.

— Locality —~ Heterogeneity

Make < Parallelism Combine the

common best of both < Hierarchy Virtualization
case faster Speculation worlds

- Specialization ~ #pragma

20

