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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist


• Often have separate classes for each small size 
• For larger sizes: One class for each two-power size (why?)
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Seglist Allocator
• Given an array of free lists, each one for some size class

• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list 
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Advantages of Seglist allocators
• Higher throughput


• Constant time allocation and free for requests that have a dedicated 
free list (most of the cases) 

• log time for power-of-two size classes (searching the lists) 
• Better memory utilization


• First-fit search of segregated free list approximates a best-fit search 
of entire heap. 

• Extreme case: Giving each block its own size class is equivalent to 
best-fit.
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Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory 

management: programmers explicitly calling malloc/free (C/C++)

• Downside: potential memory leaks
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void foo() { 
   int *p = malloc(128); 
   p = malloc(32); 
   return; /* both blocks are now garbage */ 
}

• Alternative: implicit memory management; the programmers never 
explicitly request/free memory


• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica 

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application 

never has to free
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Garbage Collection
• How does the memory manager know when certain memory 

blocks can be freed?

• If a block will never be used in the future. How do we know that? 
• In general we cannot know what is going to be used in the future 

since it depends on program’s future behaviors 
• But we can tell that certain blocks cannot possibly be used if 

there are no pointers to them 
• Garbage collection is essentially to obtain all reachable blocks 

and discard unreachable blocks.
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Memory as a Graph
• We view memory as a directed graph


• Each block is a node in the graph 
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called 

root  nodes  (e.g. registers, locations on the stack, global variables)
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Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable  if there is a path from any root to that node. 
Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
• Idea:


• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked
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Mark bit set
freefree

root

Note: arrows here 
denote memory refs, 

not free list ptrs. 
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Mark and Sweep (cont.)
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ptr mark(ptr p) { 
   if (!is_ptr(p)) return;        // do nothing if not pointer 
   if (markBitSet(p)) return;     // check if already marked 
   setMarkBit(p);                 // set the mark bit 
   for (i=0; i < length(p); i++)  // call mark on all words 
     mark(p[i]);       //   in the block 
   return; 
}      

Mark using depth-first traversal of the memory graph 

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) { 
   while (p < end) { 
      if markBitSet(p)  
         clearMarkBit(); 
      else if (allocateBitSet(p))  
         free(p); 
      p += length(p); 
}     
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Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.

• How do you know a pointer is a pointer? After all, a pointer is just 

a 8-byte value. Any consecutive 8 bytes could be disguised as a 
pointer.


• Must be conservative. Any 8 bytes whose values fall within the 
range of the heap must be treated as a pointer. 

• C pointers can point to the middle of a block. How do you find the 
header of a block?

• Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)
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ptr

Header Data

Left Right

Size Left: smaller addresses 
Right: larger addresses
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Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC. 
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.
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Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:

• Incremental GC: Examine a small portion of heap every GC run 
• Concurrent GC: Run GC service in a separate process/thread
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Garbage Collection Implications
• GC is a great source of performance non-determinisms


• Generally can’t predict when GC will happen 
• Stop-the-world GC makes program periodically unresponsive 
• Concurrent/Incremental GC helps, but still has performance impacts 
• Bad for real-time systems: think of a self-driving car that needs to 

decide whether to avoid a pedestrian but a GC kicks in… 
• Bad for server/cloud systems: GC is a great source of tail latency
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

•Mark-sweep-compact collection (Styger, 1967)


• After M&S, compact allocated blocks to consecutive memory region. 
• Reduce external fragmentation. Allocation is also easier.
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

•Mark-sweep-compact collection (Styger, 1967)

• Mark-copy collection (Minsky, 1963)


• After mark, copy reachable objects to another region of memory as 
they are being traversed. Can be done without auxiliary storage. 

• Generational Collectors (Lieberman and Hewitt, 1983)

• Observation: most allocations become garbage very soon (“infant 

mortality”); others will survive for a long time. 
• Wasteful to scan long-lived objects every collection time 
• Idea: divide heap into two generations, young and old. Allocate into 

young gen., and promote to old gen. if lived long enough. Collect 
young gen. more often than old gen. 

• Question: Can any of these algorithms be used for GC in C?
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Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.
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Classical GC Algorithms
• All the GC algorithms described so far are tracing-based


• Start from the root pointers, trace all the reachable objects 
• Need graph traversal. Different to implement. 

• Reference counting (Collins, 1960)

• Keep a counter for each object 
• Increment the counter if there is a new pointer pointing to the object 
• Decrement the counter if a pointer is taken off the object 
• When the counter reaches zero, collect the object 

• Advantages of Reference Counting

• Simpler to implement 
• Collect garbage objects immediately; generally less long pauses 

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing 

• A heterogeneous approach (RC + tracing) is often used
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Scope of CSC 252
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The Most Important Take Away of 252
• “There is no magic.”

• Computer systems are engineering work, not science, so:

•We know exactly how things work because we build them 

(unlike natural sciences)

• Every thing can be derived from first principles. Trust your 

logical reasoning.
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The Second Most Important Take Away of 252

• “Things don’t have to be this way.”

• As long as you don’t violate physics, you can design a computer 

however you want.

• But every design decision you make usually involves certain trade-

offs. Be clear what your design goal is.

!19



The Third Most Important Take Away of 252
• Virtual all computer system design practices follow a small set of 

basic principles.

• It is these basic principles that are important, not the practices.
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