
CSC 252: Computer Organization 
 Spring 2025: Lecture 24 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

Keeping Track of Free Blocks

!2

5 4 26

5 4 26

• Method 1: Implicit list using length—links all blocks

• Method 2: Explicit list among the free blocks using pointers

• Method 3: Segregated free list
• Different free lists for different size classes

Carnegie Mellon

Segregated List (Seglist) Allocators

• Each size class of blocks has its own free list

• Organize the Seglist

• Often have separate classes for each small size
• For larger sizes: One class for each two-power size (why?)

!3

1-2

3

4

5-8

9-inf

Carnegie Mellon

Seglist Allocator
• Given an array of free lists, each one for some size class

• To allocate a block of size n:

• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list

!4

Carnegie Mellon

Advantages of Seglist allocators
• Higher throughput

• Constant time allocation and free for requests that have a dedicated
free list (most of the cases)

• log time for power-of-two size classes (searching the lists)
• Better memory utilization

• First-fit search of segregated free list approximates a best-fit search
of entire heap.

• Extreme case: Giving each block its own size class is equivalent to
best-fit.

!5

Carnegie Mellon

Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory

management: programmers explicitly calling malloc/free (C/C++)

• Downside: potential memory leaks

!6

void foo() {
 int *p = malloc(128);
 p = malloc(32);
 return; /* both blocks are now garbage */
}

• Alternative: implicit memory management; the programmers never
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application

never has to free

Carnegie Mellon

Garbage Collection
• How does the memory manager know when certain memory

blocks can be freed?

• If a block will never be used in the future. How do we know that?
• In general we cannot know what is going to be used in the future

since it depends on program’s future behaviors
• But we can tell that certain blocks cannot possibly be used if

there are no pointers to them
• Garbage collection is essentially to obtain all reachable blocks

and discard unreachable blocks.

!7

Carnegie Mellon

Memory as a Graph
• We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

!8

Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (cannot be needed by the application)

Carnegie Mellon

Mark and Sweep Collecting
• Idea:

• Use extra mark bit in the header to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!9

Mark bit set
freefree

root

Note: arrows here
denote memory refs,

not free list ptrs.

Carnegie Mellon

Mark and Sweep (cont.)

!10

ptr mark(ptr p) {
 if (!is_ptr(p)) return; // do nothing if not pointer
 if (markBitSet(p)) return; // check if already marked
 setMarkBit(p); // set the mark bit
 for (i=0; i < length(p); i++) // call mark on all words
 mark(p[i]); // in the block
 return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {
 while (p < end) {
 if markBitSet(p)  
 clearMarkBit();
 else if (allocateBitSet(p))
 free(p);
 p += length(p);
}

Carnegie Mellon

Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.

• How do you know a pointer is a pointer? After all, a pointer is just

a 8-byte value. Any consecutive 8 bytes could be disguised as a
pointer.

• Must be conservative. Any 8 bytes whose values fall within the
range of the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the
header of a block?

• Can use a balanced binary tree to keep track of all allocated blocks (key

is start-of-block)

!11

ptr

Header Data

Left Right

Size Left: smaller addresses
Right: larger addresses

Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC.
• Stop-the-world GC. When performing GC, the entire program stops.

Some calls to malloc will take considerably longer than others.

!12

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:

• Incremental GC: Examine a small portion of heap every GC run
• Concurrent GC: Run GC service in a separate process/thread

Carnegie Mellon

Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to

decide whether to avoid a pedestrian but a GC kicks in…
• Bad for server/cloud systems: GC is a great source of tail latency

!13https://robertovitillo.com/why-you-should-measure-tail-latencies/

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

•Mark-sweep-compact collection (Styger, 1967)

• After M&S, compact allocated blocks to consecutive memory region.
• Reduce external fragmentation. Allocation is also easier.

!14

After mark Mark bit set

After sweep freefree

root

Before mark

After compact freefree

Carnegie Mellon

Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)

•Mark-sweep-compact collection (Styger, 1967)

• Mark-copy collection (Minsky, 1963)

• After mark, copy reachable objects to another region of memory as
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)

• Observation: most allocations become garbage very soon (“infant

mortality”); others will survive for a long time.
• Wasteful to scan long-lived objects every collection time
• Idea: divide heap into two generations, young and old. Allocate into

young gen., and promote to old gen. if lived long enough. Collect
young gen. more often than old gen.

• Question: Can any of these algorithms be used for GC in C?

!15

Jones and Lin, “Garbage Collection: Algorithms for Automatic Dynamic Memory”, 1996.

Carnegie Mellon

Classical GC Algorithms
• All the GC algorithms described so far are tracing-based

• Start from the root pointers, trace all the reachable objects
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object
• Increment the counter if there is a new pointer pointing to the object
• Decrement the counter if a pointer is taken off the object
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

• A heterogeneous approach (RC + tracing) is often used
!16

Scope of CSC 252

!17

Problem

Algorithm

Program

Instruction Set

Architecture

Microarchitecture

Circuit

The Most Important Take Away of 252
• “There is no magic.”

• Computer systems are engineering work, not science, so:

•We know exactly how things work because we build them

(unlike natural sciences)

• Every thing can be derived from first principles. Trust your

logical reasoning.

!18

The Second Most Important Take Away of 252

• “Things don’t have to be this way.”

• As long as you don’t violate physics, you can design a computer

however you want.

• But every design decision you make usually involves certain trade-

offs. Be clear what your design goal is.

!19

The Third Most Important Take Away of 252
• Virtual all computer system design practices follow a small set of

basic principles.

• It is these basic principles that are important, not the practices.

!20

Make
common

case faster

Combine the
best of both

worlds

Locality

Parallelism

Speculation
Hierarchy

Heterogeneity

Virtualization

Specialization
{ {

#pragma

