
CSC 252: Computer Organization 
 Spring 2025: Lecture 4 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

2

Announcement
• Programming Assignment 1 is out

• Details: https://cs.rochester.edu/courses/252/spring2025/
labs/assignment1.html

• Due on Feb. 12, 11:59 PM

• You have 3 slip days

https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html
https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html
https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html

Carnegie Mellon

3

Announcement
• Programming assignment 1 is in C language. Seek help

from TAs.

• TAs are best positioned to answer your questions about

programming assignments!!!

• Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

Carnegie Mellon

4

Multiplication
• Goal: Computing Product of w-bit numbers x, y
• Exact results can be bigger than w bits

• Up to 2w bits (both signed and unsigned)

–2w –1

0

2w –1–1OMax

OMin

Original Number (w bits) Product

–22w–2 + 2w–1

22w-2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

5

Unsigned Multiplication in C

• Standard Multiplication Function

• Ignores high order w bits

• Effectively Implements the following:

UMultw(u , v)	 =	 u · v mod 2w

• • •
• • •

u
v*

• • •u · v
• • •

True Product: 2*w bits

Operands: w bits

Discard w bits: w bits

• • •

6

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

Carnegie Mellon

12.45 = 1*101 + 2*100 + 4*10-1 + 5*10-2

7

Recall: Represent Fractions in Binary
• What does 10.012 mean?

• C.f., Decimal

10.012 = 1*21 + 0*20 + 0*2-1 + 1*2-2

 = 2.2510

8

2i

2i-1

4
2
1

1/2
1/4
1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

• • •

• Binary point stays fixed

• Fixed interval between representable

numbers

• The interval in this example is 0.2510

Decimal Binary
0 0000.
1 0001.
2 0010.
3 0011.
4 0100.
5 0101.
6 0110.
7 0111.
8 1000.
9 1001.
10 1010.
11 1011.
12 1100.
13 1101.
14 1110.
15 1111.

9

Fixed-Point Representation
Decimal Binary
0 00.00
0.25 00.01
0.5 00.10
0.75 00.11
1 01.00
1.25 01.01
1.5 01.10
1.75 01.11
2 10.00
2.25 10.01
2.5 10.10
2.75 10.11
3 11.00
3.25 11.01
3.5 11.10
3.75 11.11

0 1 2 3 4 5 6 7 …. 15
• Still need to remember the binary point, but

just once for all numbers, which is implicit
given the data type

• Usual arithmetics still work

• No need to align (already aligned)

10

Carnegie Mellon

Limitations of Fixed-Point (#1)
• Can exactly represent numbers only of the form x/2k

• Other rational numbers have repeating bit representations

0 1/4 1/2 3/4 5/4 3/2 7/4 2 …. 15/4
b3b2.b1b0

Decimal Value Binary Representation
1/3 0.0101010101[01]…
1/5 0.001100110011[0011]…
1/10 0.0001100110011[0011]…

11

Limitations of Fixed-Point (#2)
•Can’t represent very small and very large numbers at

the same time

• To represent very large numbers, the (fixed) interval needs

to be large, making it hard to represent small numbers

• To represent very small numbers, the (fixed) interval needs

to be small, making it hard to represent large numbers

0 ….

A Large
Number

Unrepresentable
small numbers

A Small
Number

+∞
Unrepresentable
large numbers

12

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

13

Primer: (Normalized) Scientific Notation
• In decimal: M × 10E

• E is an integer

• Normalized form: 1<= |M| < 10

Decimal Value Scientific Notation
2 2×100

-4,321.768 -4.321768×103

0.000 000 007 51 7.51×10−9

M × 10E

Significand Base

Exponent

14

Primer: (Normalized) Scientific Notation
• In binary: (–1)s M 2E

• Normalized form:

• 1<= M < 2

• M = 1.b0b1b2b3…

Binary Value Scientific Notation
1110110110110 (-1)0 1.110110110110 x 212

-101.11 (-1)1 1.0111 x 22

0.00101 (-1)0 1.01 x 2-3

(-1)s M × 2E

Base

ExponentSign

Significand
Fraction

15

Primer: (Normalized) Scientific Notation
• In binary: (–1)s M 2E

• Normalized form:

• 1<= M < 2

• M = 1.b0b1b2b3… (-1)s M × 2E

Base

ExponentSign

Significand
Fraction

• If I tell you that there is a number where:

• Fraction = 0101

• s = 1

• E = 10

• You could reconstruct the number as (-1)11.0101x210

• Encoding

• MSB s is sign bit s

• exp field encodes Exponent (but not exactly the same, more later)

• frac field encodes Fraction (but not exactly the same, more later)

16

Primer: Floating Point Representation
• In binary: (–1)s M 2E

• Normalized form:

• 1<= M < 2

• M = 1.b0b1b2b3… (-1)s M × 2E

Base

ExponentSign

Significand

s exp frac

Fraction

17

Carnegie Mellon

6-bit Floating Point Example
s exp frac

1 3 2

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

• Example when we use 3 bits for exp (i.e., k = 3):

• bias = 3

• If E = -2, exp is 1 (0012)

• Reserve 000 and 111 for other purposes (more on this later)

• We can now represent exponents from -2 (exp 001) to 3 (exp 110)

• exp has 3 bits, interpreted as an unsigned value

• If exp were E, we could represent exponents from 0 to 7

• How about negative exponent?

• Subtract a bias term: E = exp - bias (i.e., exp = E + bias)

• bias is always 2k-1 - 1, where k is number of exponent bits

v = (–1)s M 2E

s exp frac

18

Carnegie Mellon

6-bit Floating Point Example

1
• frac has 2 bits, append them after “1.” to form M

• frac = 10 implies M = 1.10

• Putting it Together: An Example:

E exp
-3 000
-2 001
-1 010
0 011
1 100
2 101
3 110
4 111

1 100 01

3 2

v = (–1)s M 2E

-10.12 = (-1)1 1.01 x 21

1.10 x 22

19

Carnegie Mellon

Representable Numbers (Positive Only)
s exp frac

0

1/2

v = (–1)s M 2E
E exp
1 100
2 101
3 110
4 111

E exp
-3 000
-2 001
-1 010
0 011

000

2 4 8
1/4

1

001010011100101110

+∞

01

10

12

14

1011

5 7

1.01 x 23

1.10 x 23

101 01

1.01 x 22

6

1011

1.11 x 22

100011010001

• Uneven interval (c.f., fixed interval in fixed-point)

• More dense toward 0, sparser toward infinite

• Allow encoding small and large numbers at the same time

20

Carnegie Mellon

Representable Numbers (Positive Only)
s exp frac

0

v = (–1)s M 2E
E exp
1 100
2 101
3 110
4 111

E exp
-3 000
-2 001
-1 010
0 011

1/4 1/2

1

3/8

5/16 7/16

Unrepresented
small numbers

1/8

Unrepresented
small numbers

• Always round to 0 is inelegant

• Using 000 for exp doesn’t solve it either

21

Carnegie Mellon

Subnormal (De-normalized) Numbers
s exp frac

0

v = (–1)s M 2E
E exp
1 100
2 101
3 110
4 111

E exp
-3 000
-2 001
-1 010
0 011

1/4 1/2

1

3/8

5/16 7/16

• Idea: Evenly divide between 0 and 1/4 rather
than exponentially decreasing when exp = 0
(subnormal/denormalized numbers)

1/16

1/8

3/16

• E = (exp + 1) – bias (instead of exp - bias)

• M = 0.frac (instead of 1.frac)

0 000 01 = (-1)0 0.01 x 2(0+1-3) = 1/16

• Subnormal numbers allow graceful underflow

• There are many special values in scientific computing

• +/- ∞, Not-a-Numbers (NaNs) (e.g., 0 / 0, 0 / ∞, ∞ / ∞, sqrt(–1), ∞ - ∞,
∞ x 0, etc.)

• exp = 111 is reserved to represent these numbers

• exp = 111, frac = 00

• +/- ∞ (depending on the s bit). Overflow results.

• Arithmetic on ∞ is exact: 1.0/0.0 = −1.0/−0.0 = + ∞, 1.0/−0.0 = -∞

• exp = 111, frac != 00

• Represent NaNs

22

Carnegie Mellon

Special Values
s exp fracv = (–1)s M 2E

E exp
1 100
2 101
3 110
4 111

E exp
-2 000
-2 001
-1 010
0 011

23

Visualization: Floating Point Encodings
+∞−∞

−0

+Subnorm +Normalized−Subnorm−Normalized

+0
NaN NaN

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

Sparse SparseDense

24

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

25

Carnegie Mellon

IEEE 754 Floating Point Standard
• Single precision: 32 bits

• Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

26

Carnegie Mellon

IEEE Floating Point
• IEEE Standard 754

• Established in 1985 as uniform standard for floating point arithmetic

• Before that, many idiosyncratic formats

• Supported by all major CPUs (and even GPUs and other processors)

• Driven by numerical concerns

• Nice standards for rounding, overflow, underflow

• Hard to make fast in hardware

• Numerical analysts predominated over hardware designers in
defining standard

27

Carnegie Mellon

Single Precision (32-bit) Example

s exp frac
1 8-bit 23-bit

v = (–1)s M 2E

1521310 = 111011011011012

 = (-1)0 1.11011011011012 x 213

bias = 2(8-1)-1 = 127

0 1101101101101000000000010001100

exp = E + bias = 14010

