
CSC 252: Computer Organization 
 Spring 2025: Lecture 5 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcement
• Programming Assignment 1 is out

• Details: https://cs.rochester.edu/courses/252/spring2025/
labs/assignment1.html

• Due on Feb. 12, 11:59 PM
• You have 3 slip days

https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html
https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html
https://cs.rochester.edu/courses/252/spring2025/labs/assignment1.html

Carnegie Mellon

!3

Announcement
• Programming assignment 1 is in C language. Seek help

from TAs.

• TAs are best positioned to answer your questions about

programming assignments!!!

• Programming assignments do NOT repeat the lecture

materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

• When emailing TAs, email them all.

�4

Visualization: Floating Point Encodings
+∞−∞

−0

+Subnorm +Normalized−Subnorm−Normalized

+0NaN NaN

Infinite Amount of Real Numbers

Finite Amount of Floating Point Numbers

Sparse SparseDense

�5

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

�6

Carnegie Mellon

IEEE 754 Floating Point Standard
• Single precision: 32 bits

• Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

�7

Carnegie Mellon

IEEE Floating Point
• IEEE Standard 754

• Established in 1985 as uniform standard for floating point arithmetic
• Before that, many idiosyncratic formats

• Supported by all major CPUs (and even GPUs and other processors)

• Driven by numerical concerns

• Nice standards for rounding, overflow, underflow
• Hard to make fast in hardware

• Numerical analysts predominated over hardware designers in
defining standard

�8

Carnegie Mellon

Single Precision (32-bit) Example

s exp frac
1 8-bit 23-bit

v = (–1)s M 2E

1521310 = 111011011011012

 = (-1)0 1.11011011011012 x 213

bias = 2(8-1)-1 = 127

0 1101101101101000000000010001100

exp = E + bias = 14010

�9

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

�10

Carnegie Mellon

Floating Point Computations
• The problem: Computing on floating point numbers might

produce a result that can’t be precisely represented

• Basic idea

• We perform the operation & produce the infinitely precise result
• Make it fit into desired precision

• Possibly overflow if exponent too large
• Possibly round to fit into frac

�11

Carnegie Mellon

Rounding Modes (Decimal)
• Common ones:

• Towards zero (chop)
• Round down (-∞)
• Round up (+∞)

• Nearest Even: Round to nearest; if equally near, then to the
one having an even least significant digit (bit)

Rounding Mode 1.40 1.60 1.50 2.50 -1.50
Towards zero 1 1 1 2 -1
Round down (-∞) 1 1 1 2 -2
Round up (+∞) 2 2 2 3 -1
Nearest even (default) 1 2 2 2 -2

�12

Carnegie Mellon

Rounding Modes (Binary Example)
• Nearest Even; if equally near, then to the one having an

even least significant digit (bit)

• Assuming 3 bits for frac

Precise Value Rounded Value Notes
1.000011 1.000 1.000 is the nearest (down)
1.000110 1.001 1.001 is the nearest (up)
1.000100 1.000 1.000 is the nearest even (down)
1.001100 1.010 1.010 is the nearest even (up)

1.000 1.001

1.0000111.0001101.000100

even odd
1.010
even

1.001100

�13

Floating Point Addition
• (–1)s1 M1 2E1 + (-1)s2 M2 2E2

• Exact Result: (–1)s M 2E

• Sign s, significand M:
• Result of signed align & add

• Exponent E: E1
• Assume E1 > E2

• Fixing

• If M ≥ 2, shift M right, increment E
• If M < 1, shift M left k positions, decrement E by k
• Overflow if E out of range
• Round M to fit frac precision

1.000 x 2-1 + 11.10 x 2-3

1.000 x 2-1 + 0.111 x 2-1

1.111 x 2-1

align

add

�14

Mathematical Properties of FP Add
• Commutative?

• Associative?

• Overflow and inexactness of rounding
• (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

• 0 is additive identity?

• Every element has additive inverse (negation)?

• Except for infinities & NaNs
• Monotonicity: a ≥ b ⇒ a+c ≥ b+c?

• Except for infinities & NaNs

Yes

Yes

No

Almost

Almost

�15

Carnegie Mellon

Floating Point Multiplication
• (–1)s1 M1 2E1 x (–1)s2 M2 2E2

• Exact Result: (–1)s M 2E

• Sign s: 	 	 s1 ^ s2

• Significand M: 	 M1 x M2

• Exponent E: 	 E1 + E2

• Fixing

• If M ≥ 2, shift M right, increment E
• If E out of range, overflow
• Round M to fit frac precision

• Implementation

• Biggest chore is multiplying significands

�16

Mathematical Properties of FP Mult
• Multiplication Commutative?

• Multiplication is Associative?

• Possibility of overflow, inexactness of rounding
• Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20

• 1 is multiplicative identity?

• Multiplication distributes over addition?

• Possibility of overflow, inexactness of rounding
• 1e20*(1e20-1e20)= 0.0, 1e20*1e20 – 1e20*1e20 = NaN

• Monotonicity: a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

• Except for infinities & NaNs

Yes
No

Yes
No

Almost

�17

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

�18

Carnegie Mellon

IEEE 754 Floating Point Standard
• Single precision: 32 bits

• Double precision: 64 bits

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• In C language

•float	 single precision

•double	 double precision

Carnegie Mellon

!19

C Data
Type Bits Max Value Max Value

(Decimal)
char 8 27 - 1 127
short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 263 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

• To represent 231 in fixed-point, you need at least 32 bits

• Because fixed-point is a weighted positional representation

• In floating-point, we directly encode the exponent

• Floating point is based on scientific notation
• Encoding 31 only needs 7 bits in the exp field

Floating Point in C 32-bit Machine

�20

Floating Point in C

C Data
Type Bits Max Value Max Value

(Decimal)

char 8 27 - 1 127

short 16 215 - 1 32767

int 32 231 - 1 2147483647

long 64 231 - 1 ~9.2 × 1018

float 32 (2 - 2-23) × 2127 ~3.4 × 1038

double 64 (2 - 2-52) × 21023 ~1.8 × 10308

Fixed point
(implicit binary point){

SP floating point
DP floating point

64-bit Machine

Carnegie Mellon

!21

Floating Point Conversions/Casting in C

• double/float → int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range or NaN

s exp frac

1 8-bit 23-bit

s exp frac

1 11-bit 52-bit

• int → double

• Exact conversion

• int → float

• Can’t guarantee exact casting. Will round according to rounding mode

�22

Carnegie Mellon

Today: Floating Point
• Background: Fractional binary numbers and fixed-point

• Floating point representation

• IEEE 754 standard

• Rounding, addition, multiplication

• Floating point in C

• Summary

Carnegie Mellon

• Denormalized

• E = (exp + 1) – bias
• M = 0.frac

• Normalized

• E = exp – bias
• M = 1.frac

!23

Floating Point Review

s exp frac

v = (–1)s x 1.frac x 2E
Denormalized

Normalized

Special Value

s exp frac Value Value
0 000 00 0.00 x 2-2 0
0 000 11 0.11 x 2-2 3/16
0 001 00 1.00 x 2-2 1/4
0 001 11 1.11 x 2-2 7/16
0 010 00 1.00 x 2-1 1/2
0 010 11 1.11 x 2-1 7/8
0 100 00 1.00 x 20 1
0 100 11 1.11 x 20 1 3/4
0 101 00 1.00 x 21 2
0 101 11 1.11 x 21 3 1/2
0 110 00 1.00 x 22 4
0 110 11 1.11 x 22 7
0 111 00 infinite infinite
0 111 11 NaN NaN

Carnegie Mellon

!24

Floating Point Review

Denormalized

Normalized

Special Value

• If you do an integer increment
on a positive FP number, you
get the next larger FP number.

• Bit patterns representing non-
negative numbers are ordered
the same way as integers, so
could use regular integer
comparison.

• You don’t get this property if:

• exp is interpreted as signed
• exp and frac are swapped

s exp frac Value Value
0 000 00 0.00 x 2-2 0
0 000 11 0.11 x 2-2 3/16
0 001 00 1.00 x 2-2 1/4
0 001 11 1.11 x 2-2 7/16
0 010 00 1.00 x 2-1 1/2
0 010 11 1.11 x 2-1 7/8
0 100 00 1.00 x 20 1
0 100 11 1.11 x 20 1 3/4
0 101 00 1.00 x 21 2
0 101 11 1.11 x 21 3 1/2
0 110 00 1.00 x 22 4
0 110 11 1.11 x 22 7
0 111 00 infinite infinite
0 111 11 NaN NaN

Carnegie Mellon

!25

So far in 252…

Compiler

Assembler

int, float
if, else
+, -, >>

ret, call
fadd, add
jmp, jne

00001111
01010101
11110000

Fixed-point adder
(e.g., ripple carry),
Floating-point adder

C Program

Assembly

Program

Machine

Code

Processor

Transistor

Semantically
Equivalent

Semantically
Equivalent

NAND Gate
NOR Gate

Carnegie Mellon

!26

So far in 252…
High-Level
Language

Instruction Set
Architecture

(ISA)

C Program

Assembly

Program

Machine

Code

Processor

TransistorCircuit

Microarchitecture

• ISA: Software programmers’
view of a computer

• Provide all info for someone wants
to write assembly/machine code

• “Contract” between assembly/
machine code and processor

• Processors execute machine
code (binary). Assembly
program is merely a text
representation of machine
code

• Microarchitecture: Hardware
implementation of the ISA (with
the help of circuit technologies)

Carnegie Mellon

!27

This Module (4 Lectures)
High-Level
Language

Instruction Set
Architecture

(ISA)

C Program

Assembly
Program

Machine
Code

Processor

TransistorCircuit

Microarchitecture

• Assembly Programming

• Explain how various C

constructs are implemented in
assembly code

• Effectively translating from C to
assembly program manually

• Helps us understand how
compilers work

• Helps us understand how
assemblers work

•Microarchitecture is the
topic of the next module

!28

Today: Assembly Programming I: Basics

• Different ISAs and history behind them

• C, assembly, machine code

• Move operations (and addressing modes)

!29

Instruction Set Architecture
• There used to be many ISAs

• x86, ARM, Power/PowerPC, Sparc, MIPS, IA64, z
• Very consolidated today: ARM for mobile, x86 for others

• There are even more microarchitectures

• Apple/Samsung/Qualcomm have their own microarchitecture

(implementation) of the ARM ISA
• Intel and AMD have different microarchitectures for x86

• ISA is lucrative business: ARM’s Business Model

• Patent the ISA, and then license the ISA
• Every implementer pays a royalty to ARM
• Apple/Samsung pays ARM whenever they sell a smartphone

The ARM Diaries, Part 1: How ARM’s Business Model Works: https://www.anandtech.com/show/7112/
the-arm-diaries-part-1-how-arms-business-model-works

https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
https://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works

!30

Intel x86 ISA
• Dominate laptop/desktop/cloud market

!31

Aside: Dynamic Binary Translation
• Apple M1 is based on the

Arm ISA. A program
compiled to x86 ISA is
dynamically translated to
Arm ISA by Rosetta.

• Not the first time Apple
plays this trick.

!32

Aside: Dynamic Binary Translation

Circa 2006: PowerPC to x86 translation

