CSC 252: Computer Organization
Spring 2025: Lecture 6

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Announcement

* Programming Assignment 1 is due tonight

e Details: https://www.cs.rochester.edu/courses/252/
spring2023/labs/assignment.html

* You have 3 slip days

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html

Announcement

* Programming assignment 2 will be released later today.
* You might still have three slip days.

Announcement

* You might still have three slip days.
* Read the instructions before getting started!!!
* You get 1/4 point off for every wrong answer
 Maxed out at 10
* TAs are best positioned to answer your questions about
programming assignments!!!

* Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

* Logics and arithmetics problem set: https://
cs.rochester.edu/courses/252/spring2025/handouts.html.

- Not to be turned In.

https://cs.rochester.edu/courses/252/spring2025/handouts.html
https://cs.rochester.edu/courses/252/spring2025/handouts.html

Intel x86 ISA Evolution (Milestones)

* Evolutionary design: Added more features as time goes on

Date

1974
1978
1980
1985
1997
1999
2001
2004
2008

Feature Notable :
Implementation

8-bit ISA 8080

16-bit ISA (Basis for IBM PC & DOS) 8086

Add Floating Point instructions 8087

32-bit ISA (Refer to as IA32) 386

Add Multi-Media eXtension (MMX) Pentium/MMX

Add Streaming SIMD Extension (SSE) Pentium IlI

Intel’s first attempt at 64-bit ISA (IA64, failed) ltanium
Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

Our Coverage

e |[A32
e The traditional x86
o 2nd edition of the textbook

e X86-64
* The standard
o CSUG machine
 3rd edition of the textbook
« Our focus

Moore’s Law

* More instructions typically require more transistors to implement

16-Core SPARC T3
Six-Core Core i7.
!MO 0, 000 7 ix-lore Aeon . \‘ @10-Core Xeon Westmere-EX
Dual-Core ltanium 2@ @ . (e)-ootr‘a POW%RJ
+—Quad-core z
1 00.000 — i LLA LN —Quad-Core ltanium Tukwila
| POWERG® &-Core Xeon Nehalem-E

N \Six-Core Opteron 2400

Itanium 2 with 9MB cache ®
AMD Core i7 (Quad)

Itanium 2@

@®Barton

AMD K7
® AMD Ke-1I
AMD K6
' ® Pentium Il

Pentium Il
@®AMD K5
Pentium

curve shows transistor
10,000,000 ~ count doubling every
two years

Numbe(.plngtructions

L A A A B A A B A B

egsoel ¥ F ¥ Y ¢ vV YOOV OV 7%

f T ™V T |
1971 1980 1 99! ear 2000 2011

Moore’s Law

* More instructions require more transistors to implement

e Gordon Moore in 1965 predicted that the number of
transistors doubles every year
* In 975 he revised the predictic

. Toéé ’s widely-known Mogte’s
blbde about every 18 month

are never used the #flumber|18..
4

é?

LOG, OF THE NUMBE
RS

=

BER INTEGRgE

T YT Ty

o-muhwmqmmo

Moore’s Law

dl'S TECHNICA

TECH —

Transistors will stop shrinking in 2021,
- but Moore’s law will live on

Final semiconductor industry roadmap says the future is 3D packaging and cooling.

The first problem has been known about for a long while. Basically, starting at around the 65nm
node in 2006, the economic gains from moving to smaller transistors have been slowly dribbling
away. Previously, moving to a smaller node meant you could cram tons more chips onto a single
silicon wafer, at a reasonably small price increase. With recent nodes like 22 or 14nm, though,
there are so many additional steps required that it costs a lot more to manufacture a completed
wafer—not to mention additional costs for things like package-on-package (PoP) and through-
silicon vias (TSV) packaging.

Today: Compute and Control Instructions

e What’s in an ISA?

10

Byte-Oriented Memory Organization

QQ. QQ.

* Data in computers are stored in “memory”
« Conceptually, envision it as a very large array of bytes: byte-addressable
* Each byte has an address

« An address is like an index into that array
« A pointer variable is a variable that stores an address

11

How Does Pointer Work in C?7??

—gp char a = 4;
char b = 3;
char* c;
cC = &a;

b += (*c);

e The content of a pointer
variable is memory address.

e The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

e The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

C Memory Memory
Variable Content Address

a 0Ox10
b Ox11
C Ox16

12

Assembly Code’s View of Computer: ISA

Assembly CPU Register Memory
Programmer’s File %O?e
Perspective e
Stack
of a Computer

* (Byte Addressable) Memory

» Code: instructions
e Data (Instfl?:t?ons) Data | Stack
» Stack to support function call
* Register file

'”SFQA@F'H%@A%%‘CW%Q%% A _.--.
URIsRAIWRHory (.g., 128 B vs. 16 GB) 0x78 0x53 0x53
Al irstinciéiansgse eagoded as Oxfe 0x48 0x48
bits (just like data!) Oxe3 0x89 0x89

0x05 0xd3 0xd3

x86-64 Integer Register File

% 8 Bytes >

srax %r8

srbx %r9

srcx %rl0
srdx srll
srsi %rl2
srdi %rl3
srsp srl4
srbp %rl5

x86-64 Integer Register File

* | ower-half of each register can be independently
addressed (until 1 bytes)

< 8 Bytes >

C Data Type | Size (Bytes) 2 Bytes —
— es

char 1 3:_1 B—

short

int

2
. Floating point data is

long 8 stored in a separate set of
8

Pointer register file

15

Assembly Code’s View of Computer: ISA

Assembly GRD Register Addresses . Memory
Programmer’s PC File Data ([3)0?9
: » ' ala
-erspective ALU | | Condition Tt ciructions Stack
Of d Computer Codes <
* (Byte Addressable) Memory e PC: Program counter
» Code: instructions » A special register containing address
e Data of next instruction

« Called “RIP” in x86-64
* Arithmetic logic unit (ALU)
« \Where computation happens

e Condition codes

» Store status information about most
recent arithmetic or logical operation

o Used for conditional branch

« Stack to support function call

* Register file
* Faster memory (e.g., 0.5 ns vs. 15 ng)
o Small memory (e.g., 128 Bvs. 16 GB)
* Heavily used program data

16

Assembly Program Instructions

Assembly CPU Register Addresses . Memory
Programmer’s PC ile Data code
_ < > Data
Perspectlve ALU Condition Instructions SLE0K
of a Computer Codes < Heap

e Compute Instruction: Perform arithmetics on register or memory data
e addg %eax, %ebx
* C constructs: +, -, >>, etc.

e Data Movement Instruction: Transfer data between memory and register
e movqg %eax, (%ebx)

e Control Instruction: Alter the sequence of instructions (by changing PC)
e jmp, call
« C constructs: if-else, do-while, function call, etc.

17

Turning C into Object Code

C Code (sum.c) Generated x86-64 Assembly
long plus(long x, long y)

sumstore:
void sumstore(long x, long vy, ig:gq ;igﬁ 2 rbx
G CREEE T T
{
mov Srax $rbx
long t = plus(x, y); popg %rbx, !
*dest = t; e
}

Obtain (on CSUG machine) with command
gcc -O0g -S sum.c -O0 sum.s

18

Turning C into Object Code

Generated x86-64 Assembly Binary Code for sumstore

sumstore: Address I\/Iemory
pushqgq srbx

movq %rdx, %rbx 0x0400595 0x53
call plus 0x48
movq $rax, (%rbx) 0x89
popdq $rbx 0xd3
ret Oxe8
O0x£f2
Obtain (on CSUG machine) with command e
xff
gcc —C sum.sS -O sSum.o Oxff
0x48
- Total of 14 bytes 0x89
- Instructions have variable 0x03
lengths: e.qg., 1, 3, or 5 bytes 8§Z§

- Code starts at memory address
0x0400595

Instruction Processing Sequence

Assembly GRD Register Addresses > Memory
Programmer’s PC File ata Code
' < > Data
Perspective 1 [Condition — Stack
of a Computer Codes | |eStructions

Fetch Instruction — Decode __ Fetch __ Execute __ Store

(According to PC) Instruction Operands Instruction Results
0 4301d8 ddg % , (3rb ;
X addq 3%rax, (3rbx) Update
Condition
Codes y
Adjust

PC

20

Today: Compute and Control Instructions

* Move operations (and addressing modes)

21

Data Movement in Processors

Register
File

Addresses

Assembly oL

Programmer’s PC
Perspective

of a Computer || AV

Condition
Codes

Data

>

e |nitially all data is in the memory
e But memory is slow: e.g., 15 ns for each access

¢ |dea: move the frequently used data to a faster memory

Instructions
<

Memory

Code
Data
Stack

e Register file is faster (but much smaller) memory: e.g., 0.5 ns
¢ [here are other kinds of faster memory that we will talk about later
e Key: register file is programmer visible, i.e., you could use

instructions to explicitly move data between memory and register file.

22

Data Movement Instruction Example

data at the address

!

| P = a;
: assuming:
movq %rdx,[($rdil) p isin $rdi
| T a isin $rdx

address

e Semantics:
e Move (really, copy) data in register $rdx to memory location

whose address is the value stored in $rdi
e Pointer dereferencing

23

Memory Addressing Modes

* An addressing mode specifies:
* how to calculate the effective memory address of an operand
* by using information held in registers and/or constants

e Normal: (R)

« Memory address: content of Register R (Reg[R])
 Pointer dereferencing in C

movqg (%rcx),%rax; // address = %$rcx
e Displacement: D(R)
 Memory address: Reg[R]+D

» Register R specifies start of memory region
« Constant displacement D specifies offset

movq 8 (%rbp) ,%rdx; // address = %rbp + 8

24

Data Movement Instructions

movq Source, Dest

Operator Operands

 Memory:

o Simplest example: ($rax)

« How to obtain the address is called “addressing mode”
» Register:

« Example: $rax, %rl3

« But $rsp reserved for special use
« Immediate: Constant integer data

« Example: $0x400, $-533; like C constant, but prefixed with ‘$’

« Encoded with 1, 2, or 4 bytes; can only be source

25

movg Operand Combinations

Source Dest Example C Analog
4 Reg movg $0x4,%rax temp = 0x4;
Imm
Mem movqg $-147, ($rax) *p = -147;
movq < Reg Reg movq %rax,%rdx temp2 = templ;
Mem movg %rax, ($rdx) *p = temp;

\Mem Reg movq (%rax), %rdx temp = *p;

Cannot do memory-memory transfer
with a single instruction in x86.

26

Example of Simple Addressing Modes
Registers Memory Addr

void swap

(long *xp, long *yp) o rdi Xp *Xp Xp
{ long t0 = *xp; 3rsi YpP
long tl1 = *yp;
*xp = tl; srax
el i
y = srdx *yp yP
swap
movqg $rdi) , %$rax # t0 = *xp
movq $rsi), %rdx # t1 = *yp
movq $rdx, (%rdi) # *xp = tl
movq $rax, (%rsi) # *yp = tO

27

Understanding Swap()

Registers

Frdi 0x120

$rsi 0x100

$rax 123

Frdx 456

swap:
movq
movq
movq
movq
ret

grdi) , %Srax

grsi), %rdx

srdx,

srax,

Memory Addr
238| 0x120 xp
0x118
0x110
0x108
128 0x100 vyp
t0 = *xp
tl = *yp
($rdi) # *xp = tl
$rsi) # *yp = tO

28

Complete Memory Addressing Modes

* The General Form: D(Rb,Ri,S)
* Memory address: Reg[Rb] + S * Reg[Ri] + D
E.g., 8 (%eax, %ebx, 4);//address = %$eax + 4 * %$ebx + 8
« D: Constant “displacement”
 Rb: Base register: Any of 16 integer registers

* Ri: Index register: Any, except for %rsp
e S: Scale:1,2,4,0r8

e What is 8 (¥eax, %ebx, 4)used for?
e Special Cases

(Rb,Ri) address = Reg[Rb]+Reg|Ri]
D(Rb,Ri) address = Reg[Rb]+Reg|Ri]+D
(Rb,Ri,S) address = Reg[Rb]+S*Reg|RI]

29

Address Computation Examples

Frdx 0xf000

$rcx 0x0100

Expression

Address Computation

Address

0x8 ($rdx)

Oxf000 + Ox8

0xf008

$rdx, $rcx)

Ox£f000 + 0x100

0xf100

($rdx, %rcx,4)

Ox£f000 + 4*0x100

0x£f400

0x80 (,%rdx, 2)

2*0x£f000 + 0x80

0x1e080

Address Computation Instruction

leaqg 4(%rsi,%rdi,2), %rax

|

%rax = %rsi + %rdi *2 + 4

e leaq Src, Dst

« Src is address mode expression
« Set Dst to address denoted by expression
* No actual memory reference is made

e Uses
o Computing addresses without a memory reference
e E.g., translation of p = &x]il;

31

Data Movement Recap

movqg srdi) , 3rdx

e Semantics:

e Move (really, copy) data store in memory location whose
address is the value stored in $xrdi to register $rdx

movq srdx, (%rdi)
movq 8 (%rdi), %rdx
addqg 8 (%rdi), %rdx

Accessing memory and doing computation in
one instruction. Allowed in x86, but not all
ISAs allow that (e.g., MIPS).

FrINETeTETTITETE g T, e ———
e

32

