
CSC 252: Computer Organization 
 Spring 2025: Lecture 6 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

!2

Announcement
• Programming Assignment 1 is due tonight

• Details: https://www.cs.rochester.edu/courses/252/
spring2023/labs/assignment1.html

• You have 3 slip days

https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html
https://www.cs.rochester.edu/courses/252/spring2022/labs/assignment1.html

Carnegie Mellon

!3

Announcement
• Programming assignment 2 will be released later today.

• You might still have three slip days.

Carnegie Mellon

!4

Announcement
• You might still have three slip days.

• Read the instructions before getting started!!!

• You get 1/4 point off for every wrong answer
• Maxed out at 10

• TAs are best positioned to answer your questions about
programming assignments!!!

• Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have
learned from the lectures and work out something new.

• Logics and arithmetics problem set: https://
cs.rochester.edu/courses/252/spring2025/handouts.html.

• Not to be turned in.

https://cs.rochester.edu/courses/252/spring2025/handouts.html
https://cs.rochester.edu/courses/252/spring2025/handouts.html

Date Feature Notable
Implementation

1974 8-bit ISA 8080
1978 16-bit ISA (Basis for IBM PC & DOS) 8086
1980 Add Floating Point instructions 8087
1985 32-bit ISA (Refer to as IA32) 386
1997 Add Multi-Media eXtension (MMX) Pentium/MMX
1999 Add Streaming SIMD Extension (SSE) Pentium III
2001 Intel’s first attempt at 64-bit ISA (IA64, failed) Itanium
2004 Implement AMD’s 64-bit ISA (x86-64, AMD64) Pentium 4E
2008 Add Advanced Vector Extension (AVE) Core i7 Sandy Bridge

!5

Intel x86 ISA Evolution (Milestones)
• Evolutionary design: Added more features as time goes on

!6

Our Coverage
• IA32

• The traditional x86
• 2nd edition of the textbook

• x86-64

• The standard
• CSUG machine
• 3rd edition of the textbook
• Our focus

!7

Moore’s Law
• More instructions typically require more transistors to implement

!8

Moore’s Law
• More instructions require more transistors to implement
• Gordon Moore in 1965 predicted that the number of

transistors doubles every year

• In 1975 he revised the prediction to doubling every 2 years

• Today’s widely-known Moore’s Law: number of transistors

double about every 18 months

• Moore never used the number 18…

!9

Moore’s Law
• Question: why is transistor count increasing but computers

are becoming smaller?

• Because transistors are becoming smaller
• ~1.4x smaller each dimension(1.42 ~ 2)

• Moore’s Law is:

• A law of physics?
• A law of math?
• A law of economy?
• A law of psychology?

Yes

No
No

Yes

!10

Carnegie Mellon

Today: Compute and Control Instructions
• Different ISAs and history behind them

• What’s in an ISA?

• Move operations (and addressing modes)

• Arithmetic & logical operations

• Control: Conditional branches (if… else…)

• Control: Loops (for, while)

• Control: Switch Statements (case… switch…)

Carnegie Mellon

!11

Byte-Oriented Memory Organization

• Data in computers are stored in “memory”

• Conceptually, envision it as a very large array of bytes: byte-addressable

• Each byte has an address

• An address is like an index into that array
• A pointer variable is a variable that stores an address

• • •
00
••
•0

FF
••
•F

!12

How Does Pointer Work in C???
char a = 4;
char b = 3;
char* c;
c = &a;
b += (*c);

Memory
Content

C
Variable

a
b

c

• The content of a pointer
variable is memory address.

• The ‘&’ operator (address-of
operator) returns the memory
address of a variable.

• The ‘*’ operator returns the
content stored at the memory
location pointed by the pointer
variable (dereferencing)

Memory
Address

0x10
0x11

0x16

…

…

4

37

random0x10

!13

CPU

Assembly Code’s View of Computer: ISA

Register
File

Memory
Code
Data
Stack

Assembly
Programmer’s
Perspective

of a Computer

• (Byte Addressable) Memory

• Code: instructions
• Data
• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)
• Small memory (e.g., 128 B vs. 16 GB)
• Heavily used program data

Code
(Instructions) StackData

 0x53
0x48
0x89
0xd3

 0x78
0xfe
0xe3
0x05

 0x53
0x48
0x89
0xd3

Instruction is the fundamental
unit of work.
All instructions are encoded as
bits (just like data!)

%rax %r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15%rbp

%rsp

%rbx

%rcx

%rdx

%rsi

%rdi

8 Bytes

!14

x86-64 Integer Register File

%rax

!15

x86-64 Integer Register File
• Lower-half of each register can be independently

addressed (until 1 bytes)

%eax %ax %al

8 Bytes
4 Bytes

2 Bytes
1 B

C Data Type Size (Bytes)

char 1

short 2

int 4

long 8

Pointer 8

Floating point data is
stored in a separate set of
register file

!16

CPU

Assembly Code’s View of Computer: ISA

PC
Register

File
Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• PC: Program counter

• A special register containing address

of next instruction
• Called “RIP” in x86-64

• Arithmetic logic unit (ALU)

• Where computation happens

• Condition codes

• Store status information about most

recent arithmetic or logical operation
• Used for conditional branch

• (Byte Addressable) Memory

• Code: instructions
• Data
• Stack to support function call

• Register file

• Faster memory (e.g., 0.5 ns vs. 15 ns)
• Small memory (e.g., 128 B vs. 16 GB)
• Heavily used program data

!17

CPU

Assembly Program Instructions

PC
Register

File
Memory

Code
Data
Stack
Heap

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Compute Instruction: Perform arithmetics on register or memory data

•addq %eax, %ebx
• C constructs: +, -, >>, etc.

• Data Movement Instruction: Transfer data between memory and register

• movq %eax, (%ebx)

• Control Instruction: Alter the sequence of instructions (by changing PC)

• jmp, call
• C constructs: if-else, do-while, function call, etc.

!18

Turning C into Object Code
C Code (sum.c)
long plus(long x, long y);

void sumstore(long x, long y,
 long *dest)
{
 long t = plus(x, y);
 *dest = t;
}

Generated x86-64 Assembly
sumstore:
 pushq %rbx
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 ret

Obtain (on CSUG machine) with command
gcc –Og –S sum.c -o sum.s

!19

Binary Code for sumstore

0x53
0x48
0x89
0xd3
0xe8
0xf2
0xff
0xff
0xff
0x48
0x89
0x03
0x5b
0xc3

Turning C into Object Code

• Total of 14 bytes

• Instructions have variable

lengths: e.g., 1, 3, or 5 bytes

• Code starts at memory address

0x0400595

0x0400595

Address Memory

Obtain (on CSUG machine) with command
gcc –c sum.s -o sum.o

Generated x86-64 Assembly
sumstore:
 pushq %rbx
 movq %rdx, %rbx
 call plus
 movq %rax, (%rbx)
 popq %rbx
 ret

!20

CPU

Instruction Processing Sequence

PC
Register

File
Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

Fetch Instruction
(According to PC)

Decode
Instruction

Fetch
Operands

Execute
Instruction

Update
Condition

Codes

Store
Results

Adjust
PC

 0x4801d8 addq %rax,(%rbx)

!21

Carnegie Mellon

Today: Compute and Control Instructions
• Different ISAs and history behind them

• What’s in an ISA?

• Move operations (and addressing modes)

• Arithmetic & logical operations

• Control: Conditional branches (if… else…)

• Control: Loops (for, while)

• Control: Switch Statements (case… switch…)

!22

CPU

Data Movement in Processors

PC
Register

File
Memory

Code
Data
Stack

Addresses

Data

InstructionsCondition
Codes

Assembly
Programmer’s
Perspective

of a Computer ALU

• Initially all data is in the memory
• But memory is slow: e.g., 15 ns for each access
• Idea: move the frequently used data to a faster memory
• Register file is faster (but much smaller) memory: e.g., 0.5 ns
• There are other kinds of faster memory that we will talk about later
• Key: register file is programmer visible, i.e., you could use

instructions to explicitly move data between memory and register file.

!23

Data Movement Instruction Example

address

data at the address

movq %rdx, (%rdi)

• Semantics:

• Move (really, copy) data in register %rdx to memory location

whose address is the value stored in %rdi
• Pointer dereferencing

*p = a;
assuming:

p is in $rdi
a is in $rdx

!24

Memory Addressing Modes
•An addressing mode specifies:

• how to calculate the effective memory address of an operand
• by using information held in registers and/or constants

•Normal: (R)

• Memory address: content of Register R (Reg[R])
• Pointer dereferencing in C 
 
movq (%rcx),%rax; // address = %rcx

•Displacement: D(R)

• Memory address: Reg[R]+D
• Register R specifies start of memory region
• Constant displacement D specifies offset 
 
movq 8(%rbp),%rdx; // address = %rbp + 8

!25

Data Movement Instructions

• Memory:

• Simplest example: (%rax)
• How to obtain the address is called “addressing mode”

• Register:

• Example: %rax, %r13
• But %rsp reserved for special use

• Immediate: Constant integer data

• Example: $0x400, $-533; like C constant, but prefixed with ‘$’
• Encoded with 1, 2, or 4 bytes; can only be source

movq Source, Dest
Operator Operands

!26

movq Operand Combinations

Cannot do memory-memory transfer
with a single instruction in x86.

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Example

!27

%rdi

%rsi

%rax

%rdx

xp

yp

Example of Simple Addressing Modes
void swap
 (long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

MemoryRegisters
xp

yp

*xp

*yp

Addr

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

!28

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory
xp

yp

Addr
0x120

0x118

0x110

0x108

0x100

123

456

456

123

!29

Complete Memory Addressing Modes

• The General Form: D(Rb,Ri,S)

• Memory address: Reg[Rb] + S * Reg[Ri] + D
• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8
• D: 	 Constant “displacement”
• Rb: 	 Base register: Any of 16 integer registers
• Ri:	 Index register: Any, except for %rsp
• S: 	 Scale: 1, 2, 4, or 8

•What is 8(%eax, %ebx, 4)used for?
•Special Cases

	 	 (Rb,Ri)	 address = Reg[Rb]+Reg[Ri]
	 	 D(Rb,Ri)	 address = Reg[Rb]+Reg[Ri]+D
	 	 (Rb,Ri,S)	 address = Reg[Rb]+S*Reg[Ri]

!30

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

!31

Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression
• Set Dst to address denoted by expression
• No actual memory reference is made

• Uses

• Computing addresses without a memory reference

• E.g., translation of p = &x[i];

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4

Illegal in x86 (and almost all other ISAs). Could
make microarchitecture implementation
inefficient/inelegant.

!32

Data Movement Recap
movq (%rdi), %rdx

• Semantics:

• Move (really, copy) data store in memory location whose

address is the value stored in %rdi to register %rdx

movq %rdx, (%rdi)

movq 8(%rdi), %rdx

movq (%rdi), (%rdx)

addq 8(%rdi), %rdx

Accessing memory and doing computation in
one instruction. Allowed in x86, but not all
ISAs allow that (e.g., MIPS).

