
CSC 252: Computer Organization 
 Spring 2025: Lecture 7 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Carnegie Mellon

2

Announcement
• You might still have three slip days.

• Read the instructions before getting started!!!

• You get 1/4 point off for every wrong answer

• Maxed out at 10

• TAs are best positioned to answer your questions about
programming assignments!!!

• Programming assignments do NOT repeat the lecture
materials. They ask you to synthesize what you have learned
from the lectures and work out something new.

• Logics and arithmetics problem set: https://
www.cs.rochester.edu/courses/252/spring2023/
handouts.html.

• Not to be turned in.

https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html
https://www.cs.rochester.edu/courses/252/spring2023/handouts.html

3

Carnegie Mellon

Today: Compute and Control Instructions
• Move operations (and addressing modes)

• Arithmetic & logical operations

• Control: Conditional branches (if… else…)

• Control: Loops (for, while)

• Control: Switch Statements (case… switch…)

4

Data Movement Instruction Example

address

data at the address

movq %rdx, (%rdi)

• Semantics:

• Move (really, copy) data in register %rdx to memory location

whose address is the value stored in %rdi

• Pointer dereferencing

*p = a;

assuming:

p is in $rdi

a is in $rdx

5

Data Movement Instructions

• Memory:

• Simplest example: (%rax)

• How to obtain the address is called “addressing mode”

• Register:

• Example: %rax, %r13

• But %rsp reserved for special use

• Immediate: Constant integer data

• Example: $0x400, $-533; like C constant, but prefixed with ‘$’

• Encoded with 1, 2, or 4 bytes; can only be source

movq Source, Dest
Operator Operands

6

movq Operand Combinations

Cannot do memory-memory transfer
with a single instruction in x86.

movq

Imm

Reg

Mem

Reg
Mem

Reg
Mem

Reg

Source Dest C Analog

movq $0x4,%rax temp = 0x4;

movq $-147,(%rax) *p = -147;

movq %rax,%rdx temp2 = temp1;

movq %rax,(%rdx) *p = temp;

movq (%rax),%rdx temp = *p;

Example

7

Memory Addressing Modes
• An addressing mode specifies:

• how to calculate the effective memory address of an operand

• by using information held in registers and/or constants

•Normal: (R)

• Memory address: content of Register R (Reg[R])

• Pointer dereferencing in C 

 
movq (%rcx),%rax; // address = %rcx

•Displacement: D(R)

• Memory address: Reg[R]+D

• Register R specifies start of memory region

• Constant displacement D specifies offset 

 
movq 8(%rbp),%rdx; // address = %rbp + 8

8

%rdi

%rsi

%rax

%rdx

xp

yp

Example of Simple Addressing Modes
void swap

 (long *xp, long *yp)

{

 long t0 = *xp;

 long t1 = *yp;

 *xp = t1;

 *yp = t0;

}

MemoryRegisters
xp

yp

*xp

*yp

Addr

swap:

 movq (%rdi), %rax # t0 = *xp

 movq (%rsi), %rdx # t1 = *yp

 movq %rdx, (%rdi) # *xp = t1

 movq %rax, (%rsi) # *yp = t0

 ret

swap:

 movq (%rdi), %rax # t0 = *xp

 movq (%rsi), %rdx # t1 = *yp

 movq %rdx, (%rdi) # *xp = t1

 movq %rax, (%rsi) # *yp = t0

 ret

9

Understanding Swap()

123

456

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

xp

yp

Addr

0x120

0x118

0x110

0x108

0x100

123

456

456

123

10

Complete Memory Addressing Modes

• The General Form: D(Rb,Ri,S)

• Memory address: Reg[Rb] + S * Reg[Ri] + D

• E.g., 8(%eax, %ebx, 4); // address = %eax + 4 * %ebx + 8

• D: 	 Constant “displacement”

• Rb: 	 Base register: Any of 16 integer registers

• Ri:	 Index register: Any, except for %rsp

• S: 	 Scale: 1, 2, 4, or 8

•What is 8(%eax, %ebx, 4)used for?

• Special Cases

	 	 (Rb,Ri)	 address = Reg[Rb]+Reg[Ri]

	 	 D(Rb,Ri)	 address = Reg[Rb]+Reg[Ri]+D

	 	 (Rb,Ri,S)	 address = Reg[Rb]+S*Reg[Ri]

11

Expression Address Computation Address

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

Carnegie Mellon

Address Computation Examples

%rdx 0xf000

%rcx 0x0100

0xf000 + 0x8

0xf000 + 0x100

0xf000 + 4*0x100

2*0xf000 + 0x80

0xf008

0xf100

0xf400

0x1e080

12

Carnegie Mellon

Address Computation Instruction

• leaq Src, Dst

• Src is address mode expression

• Set Dst to address denoted by expression

• No actual memory reference is made

• Uses

• Computing addresses without a memory reference

• E.g., translation of p = &x[i];

leaq 4(%rsi,%rdi,2), %rax

%rax = %rsi + %rdi * 2 + 4

Illegal in x86 (and almost all other ISAs). Could
make microarchitecture implementation
inefficient/inelegant.

13

Data Movement Recap
movq (%rdi), %rdx

• Semantics:

• Move (really, copy) data store in memory location whose

address is the value stored in %rdi to register %rdx

movq %rdx, (%rdi)

movq 8(%rdi), %rdx

movq (%rdi), (%rdx)

addq 8(%rdi), %rdx

Accessing memory and doing computation in
one instruction. Allowed in x86, but not all
ISAs allow that (e.g., MIPS).

14

Carnegie Mellon

Today: Compute and Control Instructions
• Move operations (and addressing modes)

• Arithmetic & logical operations

• Control: Conditional branches (if… else…)

• Control: Loops (for, while)

• Control: Switch Statements (case… switch…)

15

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes
addq src, dest Dest = Dest + Src

addq %rax, %rbx
%rbx = %rax + %rbx

Truncation if overflow,

set carry bit (more later…)

• • •

• • •

u

v+

• • •u + v

• • •TAddw(u , v)

16

Carnegie Mellon

Some Arithmetic Operations (2 Operands)
Format Computation Notes
addq src, dest Dest = Dest + Src
subq src, dest Dest = Dest - Src
imulq src, dest Dest = Dest * Src
salq src, dest Dest = Dest << Src Also called shlq
sarq src, dest Dest = Dest >> Src Arithmetic shift
shrq src, dest Dest = Dest >> Src Logical shift
xorq src, dest Dest = Dest ^ Src
andq src, dest Dest = Dest & Src
orq src, dest Dest = Dest | Src

17

Carnegie Mellon

• No distinction between signed and unsigned (why?)

• Bit level behaviors for signed and unsigned arithmetic are

exactly the same — assuming truncation

long signed_add

(long x, long y)

{

 long res = x + y;

 return res;

}

#x in %rdx, y in %rax

addq %rdx, %rax

long unsigned_add

(unsigned long x, unsigned long y)

{

 unsigned long res = x + y;

 return res;

}

#x in %rdx, y in %rax

addq %rdx, %rax

 010

+) 101

 111

Bit-level
 2

+) -3

 -1

Signed Unsigned
 2

+) 5

 7

Some Arithmetic Operations (2 Operands)

18

Carnegie Mellon

• Unary Instructions (one operand)

Format Computation
incq dest Dest = Dest + 1
decq dest Dest = Dest - 1
negq dest Dest = -Dest
notq dest Dest = ~Dest

Some Arithmetic Operations (1 Operand)

19

Carnegie Mellon

Today: Compute and Control Instructions
• Move operations (and addressing modes)

• Arithmetic & logical operations

• Control: Conditional branches (if… else…)

• Control: Loops (for, while)

• Control: Switch Statements (case… switch…)

Three Basic Programming Constructs

Subtask 1

Subtask 2
Subtask 1 Subtask 2

Test
Condition

True False Test
Condition

Subtask

True

False

Sequential Conditional Iterative

20

if (x > y) r = x - y;

else r = y - x;

while (x > 0) {

 x—-;

}

a = x + y;

y = a - c;

…

Three Basic Programming Constructs

Subtask 1 Subtask 2

Test
Condition

True False

Conditional

21

• Both conditional and iterative
programming requires altering
the sequence of instructions
(control flow)

• We need a set of control
instructions to do so

• Two fundamental questions:

• How to test condition and how to

represent test results?

• How to alter control flow according

to the test results? if (x > y) r = x - y;

else r = y - x;

22

Carnegie Mellon

Conditional Branch Example

long absdiff

 (long x, long y)
{
 long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:

 cmpq %rsi,%rdi # x:y

 jle .L4
 movq %rdi,%rax

 subq %rsi,%rax

 ret

.L4: # x <= y

 movq %rsi,%rax

 subq %rdi,%rax

 ret

gcc –Og -S –fno-if-conversion control.c

Labels are symbolic names used
to refer to instruction addresses.

Register Use(s)
%rdi x

%rsi y

%rax Return value

23

Carnegie Mellon

Conditional Branch Example

unsigned long absdiff

 (unsigned long x,
unsigned long y)
{
 unsigned long result;
 if (x > y)
 result = x-y;
 else
 result = y-x;
 return result;
}

absdiff:

 cmpq %rsi,%rdi # x:y

 jle .L4
 movq %rdi,%rax

 subq %rsi,%rax

 ret

.L4: # x <= y

 movq %rsi,%rax

 subq %rdi,%rax

 ret

gcc –Og -S –fno-if-conversion control.c

Labels are symbolic names used
to refer to instruction addresses.

Register Use(s)
%rdi x

%rsi y

%rax Return value

 jbe .L4

cmpq %rsi, %rdi

jle .L4

24

Carnegie Mellon

Conditional Jump Instruction

• Semantics:

• If %rdi is less than or

equal to %rsi (both
interpreted as signed
value), jump to the part
of the code with a
label .L4

• Under the hood:

• cmpq instruction sets the

condition codes

• jle reads and checks the

condition codes

• If condition met, modify the

Program Counter to point to
the address of the
instruction with a label .L4

Jump to label if less
than or equal to

