
 Midterm Exam

CSC 252

7 March 2025

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Jack Cashman, Ethan Chen, Weikai Lin, Jiaqi Nie, Chenrui Wang, Boyi Zhang

 Name: ____________________________________

Problem 0 (2 points):

Problem 1 (12 points):

Problem 2 (21 points):

Problem 3 (27 points):

Problem 4 (28 points):

Total (90 points):

Remember “I don’t know” is given 15% partial credit, but you must erase everything else. This

does not apply to extra credit questions (if any).

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 75 minutes to work.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

Have a good spring break and GOOD LUCK!!!

Problem 0: Warm-up (2 Points)

What’s the most surprising thing you’ve learned so far?

Problem 1: Fixed-Point Arithmetics (12 points)

Part a) (2 points) Represent decimal number 31 in the hexadecimal form.

1F

Part b) (4 points) Represent octal (base 8) number 73 in the decimal form and binary form.

Base 10 = 59 Base 2 = 111011

Part c) (6 points) Consider two signed binary numbers A = 10101 and B = 11001, both are

represented using two’s complement representation. Do the math below.

(2 points) What’s the result of !A || B (! is NOT and || is OR)?

11011

(2 points) What’s the result of A^B (^ is XOR)?

01100

(2 points) How to write A in base 7?

-14

Problem 2: Floating-Point Arithmetics (21 points)

Part a) (4 points)

(2 points) Write using the normalized scientific notation. 10 7
8

 1. 010111 × 23

(2 points) Write using the normalized scientific notation. 32 5
16

 1. 000000101 × 25

Part b) (8 points) The engineering team is designing a new 12 bit floating point standard.

The format follows the principles of the IEEE-style floating point representation we discussed in

the class. The engineering team is considering two possible standard:

●​ Standard A: 6 fraction bits

●​ Standard B: 9 fraction bits

(4 points) What are the biases for Standard A and Standard B?

Standard A: 15

Standard B: 1

(4 points) Given the requirement that the smallest gap between two representable numbers is

at most , which of the two options meets the requirement? Show your work.
1

224

Neither.

Standard A: the smallest gap between two representable number is 2−14 × 2−6 = 2−20 > 2−24.

Standard B: the smallest gap between two representable number is . ​2−9 > 2−24

Neither of them satisfy the requirement

Part c) (9 points) Now the engineering team wants to design another 12-bit floating point

representation. They want the representation to be able to precisely represent -100 and 100.

(5 points) What is the representation that meets this requirement while having the smallest

gap between two consecutive, representable numbers?

Turn 100 into binary scientific form, we have We need at least 4 fraction 1. 1001 × 26.
bits to precisely represent 100 and -100. Let F be the number of fraction bits and E be

the number of exponent bits. The have smallest gap between two consecutive

representable numbers with F and E, we have The increase of Bias is 2−𝐵𝑖𝑎𝑠(𝐸)+1 × 2−𝐹.
much larger than the increase of F. So we want as many exponent bits as possible. So

answer will be 4 fraction bits and 7 exponent bits.

(4 points) What is the smallest positive number that can be precisely represented in this

format?

For 7 fraction bit, we have bias . Then answer will be 26 − 1 = 63 2−63+1 × 2−4 = 2−66

Problem 3: Logic Design (27 points)

Part a) (4 points)

(2 points) What is the result of a bitwise XOR operation between 01100 and 00111?

01011

(2 points) What is the result of a bitwise NAND operation between 01000 and 01010?

10111

Part b) (13 points)

(8 points) Given the circuit above, complete the following truth table. Additional columns are

provided to show your partial work (for partial credit).

INPUT 0 INPUT 1 SEL OUTPUT

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

(2 points) Briefly describe the behaviour of the circuit above in words.

2 pts: “If SEL is 0, output the value from INPUT0, otherwise output the value from INPUT1.”

1 pt: Express the diagram in a logical expression.

(3 points) Using the same circuit, it is possible to implement the equivalent of an AND gate.

Complete the following table by assigning each of the three input wires to variables A, B or

constants 0, 1 such that OUTPUT = A AND B.

Input Assigned variable/constant

INPUT 0 0

INPUT 1 A (B)

SEL B (A)

Part c) (8 points)

Consider the circuit below, which consists of N+1 XOR gates cascaded with a single NOT gate

placed immediately before the (N+1)
th

 XOR gate.

(6 points) What is the output of the circuit for the following values of N? You can write the

output as a function of A.

N = 50

Any of: !A / NOT(A) / ¬A / 0 if A=1, 1 if A=0.

N = 63

Any of: !A / NOT(A) / ¬A / 0 if A=1, 1 if A=0.

(4 points) Draw a simpler circuit that will achieve the same output as the circuit above.

Problem 4: Assembly Programming (28 points)

Conventions:

1.​ For this section, the assembly shown uses the AT&T/GAS syntax opcode src, dst for

instructions with two arguments where src is the source argument and dst is the

destination argument. For example, this means that mov a, b moves the value a into b.

2.​ All C code is compiled on a 64-bit machine, where arrays grow toward higher

addresses.

3.​ We use the x86 calling convention. That is, for functions that take two arguments, the

first argument is stored in %edi (%rdi) and the second is stored in %esi (%rsi) at the

time the function is called; the return value of a function is stored in %eax (%rax) at the

time the function returns.

4.​ We use the Little Endian byte order when storing multi-byte variables in memory.

Part a) (10 points)

Consider the following function `fibonacci` and the assembly code that implements the C

function.

int fibonacci(int n) {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);

}

0000000000401106 <fibonacci>:
401106: push %rbp
401107: mov %rsp,%rbp
40110a: push %rbx
40110b: sub $0x18,%rsp
40110f: mov %_A_, -0x14(%rbp)
401112: _B_ $0x1, -0x14(%rbp)
401116: _C_ 40111d <fibonacci+0x17>
401118: mov -0x14(%rbp), %eax
40111b: jmp 40113b <fibonacci+0x35>
40111d: mov -0x14(%rbp), %eax
401120: sub $0x1, %eax
401123: mov %eax, %edi
401125: call 401106 <fibonacci>
40112a: mov %eax, %ebx
40112c: mov _D_(%rbp), %eax
40112f: ___________E___________
401132: mov %eax, %edi
401134: call 401106 <fibonacci>
401139: add %ebx, %eax
40113b: mov -0x8(%rbp), %rbx
40113f: leave
401140: ret

Your Task: Fill in the missing instructions A, B, C, D, and E to complete the assembly code.

(2 points) A:

edi/ rdi

(2 points) B:

cmp/cmpl/cmpg

(2 points) C:

jg

(2 points) D:

-0x14

(2 points) E:

sub $0x2,%eax

Part b) (18 points)

Consider the following unknown x86_64 assembly function:

000055555555516d <unknown>:
0x55555555516d: ​ mov​ $0x1,%eax
0x555555555172: ​ cmp​ $0x1,%rsi
0x555555555176: ​ jbe​ 0x5555555551aa
0x555555555178: ​ mov​ %rdi,%rdx
0x55555555517b: ​ lea​ -0x4(%rdi,%rsi,4),%r8
0x555555555180: ​ mov​ $0x1,%r9d
0x555555555186: ​ mov​ $0x0,%edi
0x55555555518b: ​ jmp​ 0x555555555199
0x55555555518d: ​ mov​ %edi,%r9d
0x555555555190: ​ add​ $0x4,%rdx
0x555555555194: ​ cmp​ %r8,%rdx
0x555555555197: ​ je ​ 0x5555555551a7
0x555555555199: ​ mov​ 0x4(%rdx),%esi
0x55555555519c: ​ mov​ (%rdx),%ecx
0x55555555519e: ​ cmp​ %ecx,%esi
0x5555555551a0: ​ jg ​ 0x55555555518d
0x5555555551a2: ​ cmovl %edi,%eax
0x5555555551a5: ​ jmp​ 0x555555555190
0x5555555551a7: ​ or ​ %r9d,%eax
0x5555555551aa: ​ ret

At the start of the function, the first argument is set to a pointer to the following integer array:

[1, 1, 3, 2]. The second argument is set to 0x4.

The cmovl instruction conditionally moves a value from the source register to the destination

register only if the sign flag is not equal to the overflow flag.

(3 points) Which line of assembly sets the condition codes for the cmovl operation on line

0x555555551a2?

0x55555555519e: ​ cmp​ %ecx,%esi

(3 points) How many times is the jump at 0x5555555551a5 taken?:

2

(3 points) How many times is the jump at 0x5555555551a0 taken?

1

(3 points) Assume that the following line of assembly was executed immediately after the first

execution of the instruction located at 0x55555555517b:

mov (%r8), %r9

What would the value in r9 be after this instruction?

2

(3 points) What is the meaning of the second argument of the function?

The second argument represents the length of the input array (first argument)

(3 points) Describe the function. What does it do?

The function returns 1 if all of the elements within an array are either strictly increasing or

strictly decreasing. The function returns 0 if this is not the case.

	Part a) (4 points)
	Part c) (8 points)

