
CSC 2/454 Programming Language Design and Implementation
=========================================================
Course Introduction

Language Design and Language Implementation go together
    an implementor has to understand the language
    a language designer has to understand implementation issues
    ** a good programmer has to understand both

LOTS of programming languages
    Wikipedia's list has 671 entries as of Aug. 2020
        those are just the "notable" ones

Why are there so many programming languages?
    evolution -- we've learned better ways of doing things over time
    diverse ideas about what is pleasant to use
    orientation toward special purposes (SQL)
    orientation toward special hardware (assembly, CUDA)
    market factors: desire to control, or avoid what others control
        (COBOL, PL/I, Ada, Swift, ...)

What makes a language successful?
    easy to learn (BASIC, Scheme, LOGO, Python)
    "powerful" -- easy to express complicated things (if fluent)
        (C++, Common Lisp, Haskell, Perl, APL)
    easy to implement (BASIC, Forth)
    possible to compile to very good (fast/small) code (C, Fortran)
    exceptionally good at something important (PHP, Ruby on Rails, R, SQL)
    backing of a powerful sponsor (COBOL, Ada, Visual Basic, C#, Swift)
    wide dissemination at minimal cost (Pascal, Java, Python, Ruby)
    market lock-in (Javascript)

Why do we have programming languages? -- what is a language _for_?
    abstraction of virtual machine -- way of specifying what you want
        the hardware to do without getting down into the bits
      * languages from the implementor's point of view
    way of thinking -- way of expressing algorithms
      * languages from the user's point of view

    This course tries to balance coverage of these two angles.  We will
    talk about language features for their own sake, and about how they
    can be implemented.

  * Knuth: Computer Programming is the art of explaining to another
    human being what you want the computer to do.

This course should help you
    learn new languages more easily
    pick the right language for the task at hand (given a choice)
    choose among alternative ways to express things in a given language
    understand what a compiler does to your code
        for performance and (sometimes) correctness debugging
    emulate useful features in languages that lack them
    use language & compiler technology in your own projects
        almost every complex system has an input language
    prepare for 2/455 :-)
    
Key to all of this is understanding the _concepts behind_ language design --
thinking about languages NOT in terms of syntax but in terms of
    naming & binding (early? late?)
    data types and abstraction mechanisms
    control flow
    closures
    concurrency
    ...

Units on
    syntax
    semantics
    functional programming
    names
    scripting
    control flow
    type systems
    concurrency
    composite types
    subroutines
    objects
    run-time systems

    (see the web site)

Traditional to group languages in terms of "paradigm"
    imperative
        von Neumann             (Fortran, Ada, Pascal, Basic, C, ...)
        object-oriented         (Smalltalk, Eiffel, C++, Java, C#,
                                    Swift, OCaml, ...)
        scripting               (perl, Python, PHP, Ruby,
                                    Javascript, Matlab, R, ...)
    declarative
        functional              (Scheme/Lisp, ML/OCaml/Haskell/F#)
        logic, constraint-based (Prolog, OPS5, spreadsheet, XSLT)

Not clear this ever really made sense: categories are not mutually exclusive,
and have been getting less so over time.

Today, probably best to talk about paradigms a language _supports_
rather than "the" paradigm to which it belongs.

We'll discuss all of this much more as the semester goes on.  For now:

    Imperative languages emphasize computation by modifying variables.
        This allows you to do unbounded amounts of work in loops.

    Functional languages emphasize computation by creating, manipulating,
        and invoking functions.  This allows you to do unbounded amounts of
        work via recursion.

    Object oriented languages emphasize structuring the code around
    abstract data types and their operations (methods).

    Scripting languages emphasize delayed decision making and programmer
    flexibility.

    Logic languages emphasize the search for values that satisfy certain
    constraints.  We'll touch on them a few times this semester, but
    they won't get as much emphasis as the others (sorry!)

So: paradigms sort of give us a Venn diagram:
    Haskell
    C
    OCaml
    C++
    Ruby
    Scala
    Perl
    eLisp

Imperative languages have historically dominated -- usually, today, with
object oriented features.
    bulk of our attention in this course
BUT
    one unit and lots of scattered attention to functional languages
    lots of functional features making their way into
        mostly-imperative languages -- Scala, Swift, Ruby, Python, ...
            lambda expressions
            functions as arguments and return values
            list comprehensions
            continuations

The imperative and functional paradigms tend to encourage different ways
of thinking about algorithms.  I'll be talking about this a lot, and
encouraging you to think in both ways (because neither is better)

Consider insertion sort.  In no particular languages:

imperative sort(A):
    for i in len(A)-2 downto 0
        v = A[i]
        for j in i+1 to len(A)-1
            // A[j..len(A)-1] is sorted
            if A[j] > v break
            A[j-1] = A[j]
        A[j-1] = v

functional sort(A):
    if len(A) < 2 return A
    else
        let v be A[0] and R be A[1..]
        return insert(v, sort(R))
    where insert(v, S):
        if len(S) == 0 return { v }
        else
            let w be S[0] and T be S[1..]
            if v < w return v . S
            else return w . insert(v, T)

These implement the same algorithm.  They are likely to compile to
nearly identical machine code.  But
(a) The functional version has no assignments.
(b) The imperative version has a more obvious implementation.
(c) when I wrote these in C and Scheme, I had to fix two bugs in the C
    version, but the Scheme one ran the first time.

Will probably draw examples from about 40 languages this semester
Will do projects in 6 or 8 of them
By the time we're done, you should be able to pick up a new language in
    a weekend (though becoming an expert will still take time)

Please watch the lecture on course administration.

========================================
Course Administration

"Flipping" the course this semester; using the whole-class meeting times
for unscripted Q&A over Zoom.

OW similar to past years.

NAVIGATION:

All course materials will be online; no handouts.
Combination of open web, Blackboard, Panopto (video), and Piazza (Q&A).
The course home page is
    http://www.cs.rochester.edu/courses/254/fall2020/

Log in and browse.  Pay particular attention to the course description,
schedule, policies, and grading standards.
Log into Blackboard and Piazza as well (links are on the course home page).

The TAs and I will post announcements to Blackboard.  Everyone should
check both the announcements and the Piazza discussion board every day.

Lecture notes are available on the web site.

The hub of the course is the schedule page:
    http://www.cs.rochester.edu/u/scott/courses/254/schedule.shtml
It will guide you through all requirements.

    << visit >>

PREREQUISITES: CSC 173 and 252, or equivalent.

If you have not had 252 (it's a new pre-req), you can get by, but read
chapter 5 (on the web) on your own.

Most of the students in the class are undergrads, but about 10% are grad
students, who take it as 454 instead of 254.  Grad students will be
expected to do some extra work, and will be graded on a separate curve.

The text for the course is _Programming_Language_Pragmatics_, 4th
edition.  Previous editions will not suffice.  So-called "supplemental"
sections (some of which I'll be assigning) are available online at
Elsevier's web site (again, with a link from the course home page).

FULL CLASS ZOOM MEETINGS:

These will be held in the scheduled "lecture" time slot.
Monday and Wednesday, 10:25-11:40 US Eastern time.

To make this new online version of class work, WE NEED PIAZZA QUESTIONS.
Before each whole-class meeting, you must
  - read the assigned sections of the textbook
  - watch the pre-recorded lecture segments
  - participate on Piazza
      - ask questions
      - improve questions
      - upvote questions

WORKSHOPS:

Required for 254; recommended for 454.  UG TAs the leaders.

Ignore what you signed up for at registration; we'll assign based on
time and online/in-person preferences; see form on Blackboard.

PROGRAMMING PROJECTS:

6 planned:

(1) familiarization assignment (combinatorial search)
    in several different languages.
(2) syntax error recovery (recursive descent review)
(3) simple translation (tree traversal, OCaml)
(4) cross indexer (scoping, scripting)
(5) storage management (tombstones)
(6) concurrency (probably in Java)

These will be similar BUT NOT THE SAME as assignments I've used in the
past.

Expect to work hard.
Comparable amount of code to 173 but MUCH more difficult.
About two weeks per project NEEDED.

Each project will begin with a pre-assignment ("trivia") whose goal is
to force you to *look* at things early.
Disproportionate share of final course grade (~10%)

COMPUTING RESOURCES:

Everyone (including grad students) will need a CSUG acct.  CS majors
should have one already.  If you don't, contact one of the grad TAs.

The Wegmans Hall majors lab and Hylan hall minors lab are likely to be
closed all fall.  Use the csug cycle servers (cycle1, cycle2, cycle3).
Labstaff is looking into making the lab machines available for remote
access as well.

QUIZZES and EXAMS:

Quiz on Blackboard once per unit (~13 times this semester)
    based on the textbook and pre-recorded lectures

Midterm and cumulative final exams (relatively low stakes)

GRADING (tentative):

Programming projects
    10% "trivia" pre-assignments
    36% main projects
Exams
    12% midterm
    12% final
Keeping up
    10% weekly quizzes
    10% workshop participation
    10% Q&A contributions

NO LATE ASSIGNMENTS OF ANY KIND WILL BE ACCEPTED.
EXCEPTIONS ONLY UNDER THE MOST DIRE OF CIRCUMSTANCES.
TURN IN WHAT YOU HAVE; I'M GENEROUS WITH PARTIAL CREDIT.

COLLABORATION AND ACADEMIC HONESTY:

Exams are individual effort only.
On-line but time-limited, and closed book.

Quizzes are also individual effort, but open book.

COLLABORATION ON IDEAS is encouraged, but you have to work through
everything yourself.  You can explore anything you want with a friend on
    explore whatever you want on a whiteboard, THEN ERASE IT
    NO NOTES -- just memories

COLLABORATION ON ARTIFACTS (copying) is EXPRESSLY FORBIDDEN, unless you
  - have permission
  - clearly indicate in your README file which parts were copied and
        from whom
  - don't expect points for the copied parts
        (but may get the satisfaction of being able to see the whole
        thing work)

Encouraged to help others: won't hurt your grade.
Everybody gets an A if they deserve it.

*** SEE FULL DETAILS ON ACADEMIC HONESTY ON THE WEB PAGE ***

Apparent violations will be referred to the Honesty Board.
(I tend to get several a year; don't be one of them.)

GETTING HELP

This is a hard course.  Don't wait to seek help.
  - read the book and watch the lectures
  - attend the Q&A sessions and workshops
  - talk to fellow students
  - go to TA office hours or send them mail
  - make an appt to talk to me
  - check out the CSUG and CCAS tutoring services

FIRST ASSIGNMENT (for Monday Aug. 31):

(1) Get a copy of the book if you haven't already.
(2) Finish reading (all of) chapter 1.
(3) Explore both the website and the Blackboard site for the course.
    Make sure you can access Pizza.
(4) Watch (the rest of) the chapter 1 pre-recorded lectures.
(5) Take quiz Q1 on Blackboard.
(6) Make sure your CSUG account is up and working.
(7) Complete "Initial Trivia assignment (T0)" on Blackboard.
(8) Take the workshop time slot preference survey.
(9) Check out the "Unix tools" assignment (A0) and work through it if it
    isn't all familiar material.

That probably looks like a _lot_, but only #s 2 and 4 (and maybe 9) will
be time-consuming.

There will be similar requirements in future weeks.  I won't be putting
lists like this in future lecture notes; follow the schedule page on the
web site.

========================================
Compilation and Interpretation

Consider our insertion sort in C:

void sort(int A[]) {
    for (int i = len(A)-2; i >= 0; i--) {
        int v = A[i];
        int j;
        for (j = i+1; j < len(A); j++) {
            /* A[j..] is sorted */
            if (A[j] > v) break;
            A[j-1] = A[j];
        }
        A[j-1] = v;
    }
}

275 characters of text in a .c file.
How do you _execute_ that?  Not immediately obvious, certainly, and a
lot less obvious if it's 275 million characters.

But suppose it's a tree data structure in memory:

void sort(int A[]) {
    for (int i = len(A)-2; i >= 0; i--) {
        int v = A[i];
        int j;
        for (j = i+1; j < len(A); j++) {
            /* A[j..] is sorted */
            if (A[j] > v) break;
            A[j-1] = A[j];
        }
        A[j-1] = v;
    }
}

Hopefully most of you believe that (given some time) you could write a
program that would take any such tree and "execute" it.  That's what an
INTERPRETER does:
    translate the source program into a data structure that makes its
        meaning more obvious
    walk the data structure (in this case, a tree) and do "the obvious"

Most scripting languages (Perl, Python, Ruby, Javascript) are
implemented in roughly this fashion.

    source program

                              interpreter             output

             input

** The interpreter stays around at execution time.
Comparatively simple.  Very flexible.  But generally kind of slow.

At the other extreme (as in, say, Fortran or C) we can translate a
program to machine language ahead of time.  That's what a COMPILER does:
    translate the source program into a data structure that makes its
        meaning more obvious (the same as in an interpreter!)
    walk the data structure and _generate machine code_ to do "the obvious"

    source program             compiler            target program

    AND

    input                    target program           output

A common intermediate is to employ a non-machine-language _intermediate
form_ and to separate the creation of the internal form from the
"execution" part.  Java does this:

    source program           compiler           intermediate program

AND THEN EITHER

    intermediate program

                                interpreter             output

                   input

OR

    intermediate program           compiler 2       target program

    AND

    input                    target program           output

The former option (final step is interpreter) was common in early Java
implementations.  Most now do the second option: "just-in-time" (JIT)
compilation.  Advantages

  - Intermediate program (Java byte code) is significantly smaller than
    textual source: good for shipping over the web.

  - JIT compilation is faster than source-to-machine translation,
    because the intermediate program has lots of semantic information
    built in (doesn't have to be figured out again).

  - Intermediate program is completely portable and self-contained:
    "run anywhere" on VIRTUAL MACHINE.

SO:
Compilation & interpretation are more shades of gray than distinct
alternatives.

In some systems, you'll see "pre-processing" prior to compilation or
interpretation.  The key difference between pre-processing and
compilation is that compilation entails semantic *understanding* of
what is being processed; pre-processing does not

    A compiler produces either error messages or output that will pass
    through further steps -- more compilation, assembly, interpretation,
    execution -- without syntactic or static semantic errors.
   
    A pre-processor will often let errors through.  A compiler hides
    further steps; a pre-processor does not.

How you view all this also depends on how deep you look.
    consider a microcoded processor (interpretation)
    or micro-ops on a modern x86 (JIT translation)
    
many compiled languages have interpreted pieces
    printf in C

most compiled languages use "virtual instructions" --
library routines that are called automatically by the compiler:
    math
    I/O
    string manipulation
    set and map operations

some compilers produce nothing but virtual instructions
    e.g. Pascal P-code, Java byte code, Microsoft CIL

what makes compilation hard? -- late binding
    names to objects -- scope rules
    types to objects/names -- type rules
    programs to code -- dynamic classes in Java, new functions
        at run time in Scheme

why interpret?
    necessary for late binding, which may increase programmer productivity
    small code size
    good diagnostics
    no (or reduced) compilation step -- fast startup from source code
    (possibly) enhanced portability
    automatic inclusion of the latest libraries

commonly interpreted languages
    Scheme
    Prolog
    Shell
    most scripting languages (Python, Ruby, PHP, JavaScript)
Compilers exist for some of these, but they aren't pure:
selective compilation of compilable pieces and extra-sophisticated
pre-processing of remaining source.  Interpretation (or dynamic
compilation) of parts of code, at least, is still necessary.

unconventional compilers
    text formatters
    silicon compilers
    database query language processors
    XSLT

========================================
PHASES OF COMPILATION

Compilers among the oldest and best understood complex programs
    date to late 1950s
    embody several lovely formalisms

Phase = large-scale step in the compilation process.

character stream
                                   scanner (lexical analysis)
token stream
                                   parser (syntax analysis)
parse tree
(concrete syntax tree)
                                   semantic analysis and
                                   intermediate code generation       FE
abstract syntax tree (AST) or                                      --------
other intermediate form (IF)
                                   machine-independent                ME
                                   code improvement
                                   (may actually be many phases)
modified intermediate form                                         --------
                                   target code generation             BE
target language
(e.g., assembly)
                                   machine-specific optimization
                                   (may also be multiple phases)
better target code                

------
symbol table

Pass = set of phases that finish before the next pass starts.
Typically implemented as a separate program.
    historically, reduced the compiler's memory footprint
    today, serve to support _compiler families_
    N + M +1 separately developed passes instead of N * M +1
        (+1 for the "middle end" [the big part])

Phases within a pass may not be clearly differentiated.
    Most compilers, for example, do not build an explicit parse tree.

----------------------------------------
Automatic tools
leverage the formalisms on which the compilation process is based

scanner                 -- definitely handy during language development
                           but may be hand-re-written for production use
parser                  -- big conceptual & organizational win
                           but may also be abandoned (e.g., in gcc)
                           to produce better error messages
attribute evaluator     -- not used all that much in practice, but
                           can be conceptually useful, and has been
                           applied to syntax-directed editors,
                           incremental compilation, and language
                           research
data-flow engine        -- very useful in the middle end: captures
                           incremental discovery of code properties --
                           e.g., which registers contain values that
                           might be needed after a subroutine call, and
                           ought to be saved on the stack
affine math framework   -- great for loop optimizations, characterization
                           of possible values array indices
code generator          -- great for portability; fairly widely used

----------------------------------------
More on the various phases:

All phases rely on the SYMBOL TABLE
  - keeps track of all the identifiers and what compiler knows about them
  - may be retained (in some form) for later use --
        by debugger, garbage collector, reflection mechanism, etc.

--------

SCANNING divides the program into "tokens"
    smallest meaningful pieces of a program
    saves time by reducing the number of pieces the parser has to process
        (and scanning is faster than parsing)

Also typically
    removes comments
    saves text of strings, identifiers, numbers in the symbol table
    evaluates numeric constants (maybe)
    tags tokens with file/line/column, for good diagnostics in later phases

Consider an (extremely simple) language to describe the input to a
hand-held calculator.  Tokens for such a language might include:

    id      = letter ( letter | digit ) *
                [ except "read" and "write" ]
    literal = digit digit *
    ":=", "+", "-", "*", "/", "(", ")"
    $$ [end of input]

(These are REGULAR EXPRESSIONS.)

--------

PARSING discovers the "context free" structure of the program.
That's the structure (set of rules) that can be described with a
CONTEXT FREE GRAMMAR (CFG).

Continuing the calculator example, suppose
  - All variables are integers.
  - There are no declarations.
  - The only statements are assignments, input, and output.
  - Expressions get to use the four arithmetic operators and parentheses.
  - Operators are left associative, with the usual precedence.
  - There are no unary operators.

Here's a grammar, in EBNF (extended Backus-Naur form):

    <pgm>           ->  <statement list> $$
    <stmt list>     ->  <stmt list> <stmt> | ε
    <stmt>          ->  id := <expr> | read id | write <expr>
    <expr>          ->  <term> | <expr> <add op> <term>
    <term>          ->  <factor> | <term> <mult op> <factor>
    <factor>        ->  ( <expr> ) | id | literal
    <add op>        ->  + | -
    <mult op>       ->  * | /

The initial, "augmenting" production is for the parser's convenience --
    $$ is generated by the scanner; it isn't part of the user's program.

Note that there is an infinite number of grammars for any given language.
This is just one.

[ An aside: You may recall from 173 that the "extra" levels of this
  grammar (expr v.  term v. factor), and the choice of ordering within
  productions, serves to produce parse trees that make it easier to see
  the precedence and associativity of operators; more on that in Chap 2.

  Also: this grammar happens to belong to one of two main classes of
  grammars that are easily parsed.  It's from a different class than the
  one you may have worked with in CSC 173.  I'm using it because it's
  arguably more intuitive.  More on this in the next lecture. ]

Mini theory lesson:

    Scanners and parsers are *recognizers* for regular and context-free
    "languages," respectively.
      - useful for describing the language

    Regular expressions and context-free grammars are *generators* for
    regular and context-free languages, respectively.
      - useful for telling if a given string is in the language

    Scanner and parser generators like lex and yacc, or antlr, transform a
    generator (RE, CFG) into a recognizer (scanner, parser).

    [ For those who've had CSC 280 or its equivalent, scanning is
    recognition of a regular language, e.g. via DFA; parsing is recognition
    of a context-free language, e.g. via PDA.  If you don't know what that
    means, don't worry; we'll get to it. ]

Using our grammar for the calculator language, consider the following
input program to print the sum and average of two numbers:

    read A
    read B
    sum := A + B
    write sum
    write sum / 2
    $$

50 characters in this program (including the spaces and line feeds)
Scanner turns them into 16 tokens (including the extra $$) and passes
    these on to the parser
The parser will discover the structure of the program and
build a PARSE TREE:

    P  ->  SL $$                                read A
    SL ->  SL S | ε                             read B
    S  ->  id := E | read id | write E          sum := A + B
    E  ->  T | E ao T                           write sum
    T  ->  F | T mo F                           write sum / 2
    F  ->  ( E ) | id | lit                     $$
    ao ->  + | -
    mo ->  * | /

--------

SEMANTIC ANALYSIS is the discovery of "meaning" in the program.
[ More accurately, it maps the program to something like math or a
formally specified abstract machine, to which humans already assign
meaning. ]

The semantic analyzer enforces all the rules that can be enforced at
compile time (before the program runs), but which the couldn't be
expressed in the CFG.  These are STATIC semantics.

Other rules (e.g. array subscript out of bounds) can't (in general) be
enforced until run time.  Those are DYNAMIC semantics -- enforced (if at all)
by code that the compiler adds to your program, to execute at run time.

Examples of (typically) static semantic rules
  - identifiers must be declared before use
  - operands need to have matching types
  - subroutines need to be passed the right number and types of parameters
  - functions must contain return statements
  - labels on the arms of a switch (case) statement must be disjoint
  - and so on

Semantic analysis for the calculator language is essentially
non-existent -- little that CAN go wrong.
Since there are no branches in our control flow, however, we can check
to make sure no variable is used before it is given a value, and maybe
warn programmers if a variable is given a value that is never used.

[ This is not possible in a more general language, unless you impose
  restrictions on merging code paths, as Java and C# do.  A good
  compiler may catch some errors, even if it can't catch all of them. ]

    read A              read A              read A
    write B             read B              read B
                        write A             C := A + B
                                            C := 5

--------

Semantics analysis is often done together with INTERMEDIATE CODE
GENERATION, in a single phase.

A parse tree reflects the structure of a program according to a CFG.
    Sometimes called a "concrete syntax tree"
    Typically has lots of extraneous detail --
        e.g., expr, term, and factor in our calculator example

Before enforcing semantic rules, we typically want to create a more
convenient structure -- the ABSTRACT SYNTAX TREE (AST).

For brevity, I'll say "parse tree" instead of "concrete syntax tree"
and "syntax tree" instead of "abstract syntax tree" or AST.

In practice, construction of the AST is often interleaved with parsing,
so we don't actually have to build the parse tree.

The semantic analyzer typically works by walking the AST and labeling
(ANNOTATING) nodes.  Labels might include
  - pointers into the symbol table
  - types of expressions
  - accumulated error messages
  - many others

The syntax tree for our sum-and-average program might look like this:

    read A
    read B
    sum := A + B
    write sum
    write sum / 2
    $$

If we traverse this tree left-to-right (given the calculator's simple
linear control flow), we can keep track in the symbol table of which
variables have been given a value, and which values have been used.

  - When we see an identifier, we look it up in the symbol table.
  - If it isn't there already, we add it.
  - For each symbol, we keep track of whether it has (a) no value,
    (b) an unused value, or (c) a used value.
  - For unused values, we may also keep track of whether an error message
    has been generated (to avoid redundant messages).
  - Initially, every variable has no value.
  - Whenever we give a symbol a value we check to see if it already has
    an unused value.
      - If so, we print a warning message.
      - In either case, we note that it now has an unused value.
  - Whenever we try to use a symbol's value we check to see if it
    currently has no value.
      - If so (and perhaps if we haven't already complained),
        we print an error message.
      - Otherwise, we note that it now has a used value.
  - At the end of the program, we scan the whole symbol table to see if
    anything has an unused value.  If so, we print a warning message.

Again, most compilers for "real" languages would not track values this
way: conditions, loops, and subroutines preclude it.  They _would_ do
things like type checking.

--------

The Scanner, Parser, and Semantic Analyzer together are the FRONT END of
the compiler -- the language-dependent part.  The same front end would
be used by an interpreter.

Next is the "middle end" -- MACHINE-INDEPENDENT CODE IMPROVEMENT
    a.k.a. OPTIMIZATION
Usually comprises multiple phases -- often dozens of them.
Each takes an intermediate-code program and produces another that does
the same thing faster, or in less space.

Such phases are often optional: they increase compilation time, but
produce better code.

Code improvement is the bulk of a modern compiler, but we won't have
time for much coverage this semester.
Take 2/455 to learn more, or read Chap 17 on the PLP CS.

Optimization phases often proceed through several progressively "lower"
(more machine-like) intermediate forms.
LLVM, gcc, and many other compiers have three main levels
    (each of which may have many sub-levels)

    high level -- abstract syntax tree
    medium level -- often some sort of CONTROL FLOW GRAPH with
        idealized assembly code within straight-line BASIC BLOCKS
    low level -- typically the assembly code of the target machine,
        or something very close

The typical phase traverses the current IF, adding annotations and
perhaps producing a "lower" IF.

(An interpreter, of course, uses a traversal to "run" your program.)

Annotations created in the middle end might include
    which recently computed values are still "live"
        (may be needed later in the program)
    which functions may call a given function
    which variables a pointer may refer to
    which variables are changed in the body of a loop
    how many times a loop is likely to run
    which expessions are evaluated in a given body of code
        (useful for finding redundancies)
    what ranges of values might be held in a given variable
    which values can actually be determined at compile time
    and many many more

All of these can help the compiler create a revised IF that is likely to
produce a faster or smaller program.

--------

The back end of the compiler starts with TARGET CODE GENERATION.
This phase typically produces assembly language or (sometimes) machine
language.  It is driven by one or more additional traversals of the IF
produced by the middle end.

Among other things, the target code generator must decide how to use the
resources of the target machine.
    layout of memory
    registers to reserve for special purposes
    calling conventions and layout of the stack
    etc.

Annotations in this step might include
    sizes of variables
    locations of variables in memory (absolute, or offset in stack frame)
    names and locations of temporary variables created to hold intermediate
        results of complicated computations
    which variables are temporarily held in which registers
    statistics on the range of case statement labels
        (to drive a look-up strategy)

In our calculator example, the simple sum-and-average program might be
translated into the following (very naive!) code for the x86:

        .data
    A:              .long   0
    B:              .long   0
    sum:            .long   0
        .text
    __start:
         call    input
         movl    %eax, A
         call    input
         movl    %eax, B
         movl    A, %eax
         movl    B, %ebx
         addl    %ebx, %eax
         movl    %eax, C
         movl    C, %eax
         push    %eax
         call    output_int
         addl    $4, %esp
         movl    C, %eax
         movl    $2, %ebx
         cltd
         idivl   %ebx
         push    %eax
         call    output_int
         addl    $4, %esp
         leave
         ret

This is obviously not the best code for our program.
You can see where it came from, though.

At the very least, a real compiler would want to track which values are
in registers so it can avoid all the redundant loads and stores.

--------

The final phase is MACHINE-SPECIFIC CODE IMPROVEMENT.  This serves
mainly to take advantage of special features of the hardware and to
identify idioms that can be replaced with something simpler.
    As a very simple example, consider multiplication by 0 or 1.
    It's often easier to fix such things in the optimizer than to
        generate the better version in the first place.

The calculator language is too simple to really illustrate this.

Some remaining units this semester will focus on compiler (and
interpreter) implementation.  These will be interleaved with units that
focus on language design.  Framework presented here will hopefully
provide useful context.
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