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================================================
SCANNING

Scanner is responsible for
    tokenizing source
    removing comments
    saving text of identifiers, numbers, strings
    saving source locations (file, line, column) for error messages

    a DFA for identifiers:

Can be built by hand (ad hoc) or automatically from regular expressions (REs)
    ad-hoc generally yields the fastest, most compact code
        by doing lots of special-purpose things
    automatically-generated scanners can come close, though
        and are easy to develop and change

A scanner generator builds a DFA automatically from a set of REs
Specifically, it constructs a machine that accepts the "language"

    identifier | int const | real const | comment | symbol | ...

In other words, a real scanner accepts the alternation of a language's
tokens, with a separate final state for each.
We run the scanner over and over to get one token after another.

(Note that theoreticians use "language" to mean a set of strings --
not nec. the valid programs of a programming language.)

Nearly universal rule:
    always take the longest possible token from the input
    thus foobar is foobar and never f or foo or foob
    more to the point, 3.14159 is a real const and never 3, ., and 14159

An RE generates a regular language; a DFA _recognizes_ it.

The standard Unix lex (flex) outputs C code.
Some other tools produce numeric tables that are read by a separate driver.
The table is the transition function
    two-dimensional array indexed by current state and input character
    entries specify
        next state
        whether to keep scanning, return a token, or announce an error

Longest-possible token rule means we return only when the next
character can't be used to continue the current token.
That next character must generally be saved for the next token.

In some cases you may need to peek at more than one character of
lookahead in order to know whether to proceed.

    In Pascal, when you had a 3 and you a saw a dot, did you proceed (in
    hopes of getting 3.14) or did you stop (in fear of getting 3..5)?

    In messier cases, you may not be able to get by with any fixed amount of
    lookahead.  In Fortran IV (c. 1962), for example, one had

        DO 5 I = 1,25       loop
        DO 5 I = 1.25       assignment
        DO 5,I = 1,25       alternate syntax for loop, f77

For most languages it suffices to remember we were in a potentially
final state, and save enough information that we can back up to it if we
get stuck later.
For some languages (famously, Fortran), that isn't enough.
     Sometimes need semantic information in order to scan (yuck).

--------------------------------------------------
Building a scanner from regular expressions

multi-step process
(1) write REs by hand, including for whitespace and comments, but with
        identifiers and reserve words (keywords) combined
(2) build NFA from REs
(3) build DFA from NFA
(4) minimize DFA
(5) add extra logic to
        implement the longest-possible-token rule, with backup
        discard white space and comments (i.e., start over when you
            realize that's what you found)
        distinguish reserve words from identifiers
        save text of "interesting" tokens
        tag returned tokens with location and text
        return an extra $$ token at end-of-file

Step (2) is inductive.  It starts with a trivial DFA to accept a single
character:

Note that this machine has a single start state, a single final state,
no transitions into the start state, and no transitions out of the final
state.  We'll maintain these invariants in three inductive steps:

Concatenation (A B):

Alternation (A | B):

Kleene closure (A*):

Step (3) uses what's called a "set of subsets" construction.
Step (4) divides the states of an initial DFA into progressively finer
equivalences classes, until it can prove that additional refinement
makes no difference.

Example 1 (in the book): real numbers (no exponential notation)

    RN = d*(.d|d.)d*

    14-state NFA results from construction
    5-state subset DFA
    4-state minimal DFA

Example 2: character strings with optional backslash-escaped quotes

    S = " ( [^\"] | \a )* "             "a" for anything

    11-state NFA results from construction
    6-state subset DFA
    4-state minimal DFA

In these two examples, the DFA was smaller than the original NFA.
Is that always the case?

No!  Quite the contrary.

Example 3: subset of (a|b|c)* in which some letter appears at least 3 times.

    RE (one possibility):
       (a|b|c)* ( (a|b)*c(a|b)*c(a|b)*c(a|b)*
                | (c|b)*a(c|b)*a(c|b)*a(c|b)*
                | (a|c)*b(a|c)*b(a|c)*b(a|c)* ) (a|b|c)*
    exists an 8-state NFA
    minimal DFA has 28 states

That NFA, of course, doesn't come from the standard construction.
Are there any that _do_, and for which the DFA is bigger yet?
Absolutely!

Example 4: subset of (0|1|2|3|4|5|6|7|8|9)* in which some digit appears
at least 10 times.

    minimal DFA has 10,000,000,001 states
    one RE is
    (0|1|2|3|4|5|6|7|8|9)*
    (
       ((1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
        (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
        (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
        (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0
        (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)* 0 (1|2|3|4|5|6|7|8|9)*)
     |
       ((0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
        (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
        (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
        (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1
        (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)* 1 (0|2|3|4|5|6|7|8|9)*)
     | ...
     |
       ((0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
        (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
        (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
        (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9
        (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)* 9 (0|1|2|3|4|5|6|7|8)*)
    )
    (0|1|2|3|4|5|6|7|8|9)*

    anybody believe the automatically constructed NFA for that has 10
    billion states?

----------------------------------------

Recall that real scanner accepts alternation of tokens, with a separate
final state for each.  Scanner generator
  - starts with NFAs for all the separate tokens
  - creates a new start state with an ε-transition to the start state of
    each token NFA
  - turns that into a DFA
  - runs the minimization algorithm starting not with two classes (final
    and non-final) but with K+1: non-final, final for token T1, final for
    token T2, ..., final for token TK.

Try Exercise 2.5 in the book!

In most compilers, the parser drives the front end.
The scanner is a subroutine (function) called by the parser.

----------------------------------------

We can also build a RE from a DFA (as shown in Section 2.4.1 on the PLP
companion site).  This completes a proof that the two notations are
equally powerful.  Nobody does this in practice, however; it amounts to
converting the computer-friendly notation into a human-friendly
notation, and we usually want to go the other way.

----------------------------------------

In a real compiler, the input may have errors, including lexical errors.
    Consider, in Java or C, the input

        int myVaria$ble

    That dollar sign isn't supposed to be there.

What should a scanner do?
Generally suffices to
    return the longest token that starts at the beginning of the
        remaining part of the input program
        (after deleting white space and comments)
    or, if there isn't a valid token starting there, delete characters
        until there is, print an error message reporting the deletion,
        and return the token found

Pseudocode for a table-driver scanner can be found in the text.

========================================
CONTEXT FREE GRAMMARS

Here's a grammar for a simple desk calculator language
(from the intro lecture notes):

    1   program       ->  stmt_list $$
    2   stmt_list     ->  stmt_list stmt | ε
    3   stmt          ->  ID := expr | READ ID | WRITE expr
    4   expr          ->  term | expr add_op term
    5   term          ->  factor | term mult_op factor
    6   factor        ->  ( expr ) | ID | LITERAL
    7   add_op        ->  + | -
    8   mult_op       ->  * | /

[This happens to be a "bottom-up" grammar -- one of the two kinds that
are easy to parse.]

Terminology:
    CF grammar
    symbols
        terminals (tokens)
        non-terminals
    start symbol
    production
    derivation (see example below)
        left-most
        right-most (canonical)
    sentential form
    [ Useless symbols: non-terminals that can't derive a token string,
    or tokens that can't be derived.  We will assume we have none of
    these.  They can be detected and removed automatically and
    efficiently. ]

-------------------------------------------
Consider the program
    READ A
    READ B
    SUM := A + B
    WRITE SUM
    WRITE SUM / 2

Derivation using the above grammar:

program
stmt_list $$
stmt_list stmt $$
stmt_list WRITE expr $$
stmt_list WRITE term $$
stmt_list WRITE term mult_op factor $$
stmt_list WRITE term mult_op LITERAL $$
stmt_list WRITE term / LITERAL $$
stmt_list WRITE factor / LITERAL $$
stmt_list WRITE ID / LITERAL $$
stmt_list WRITE ID / LITERAL $$
stmt_list stmt WRITE ID / LITERAL $$
stmt_list WRITE expr WRITE ID / LITERAL $$
stmt_list WRITE term WRITE ID / LITERAL $$
stmt_list WRITE factor WRITE ID / LITERAL $$
stmt_list WRITE ID WRITE ID / LITERAL $$
stmt_list stmt WRITE ID WRITE ID / LITERAL $$
stmt_list ID := expr WRITE ID WRITE ID / LITERAL $$
stmt_list ID := expr add_op term WRITE ID WRITE ID / LITERAL $$
stmt_list ID := expr add_op factor WRITE ID WRITE ID / LITERAL $$
stmt_list ID := expr add_op ID WRITE ID WRITE ID / LITERAL $$
stmt_list ID := expr + ID WRITE ID WRITE ID / LITERAL $$
stmt_list ID := term + ID WRITE ID WRITE ID / LITERAL $$
stmt_list ID := factor + ID WRITE ID WRITE ID / LITERAL $$
stmt_list ID := ID + ID WRITE ID WRITE ID / LITERAL $$
stmt_list stmt ID := ID + ID WRITE ID WRITE ID / LITERAL $$
stmt_list READ ID ID := ID + ID WRITE ID WRITE ID / LITERAL $$
stmt_list stmt READ ID ID := ID + ID WRITE ID WRITE ID / LITERAL $$
stmt_list READ ID READ ID ID := ID + ID WRITE ID WRITE ID / LITERAL $$
READ ID READ ID ID := ID + ID WRITE ID WRITE ID / LITERAL $$

Each line is a sentential form.  By definition that's a string of
grammar symbols that occurs in the derivation of some string of
terminals from the start symbol.

This is a "canonical" (right-most) derivation: at each step we have
expanded the right-most non-terminal in the current sentential form.
So each line is a "right sentential form."

Bottom-up parsers that read their input left-to-right to discover
right-most derivations.
Top-down parsers that read their input left-to-right discover
left-most derivations.

------------------------------------------------
A Little Theory

A context-free grammar (CFG) is a *generator* for a CF language.
A parser is a language *recognizer*.

There is an infinite number of grammars for every context-free language.
But not all grammars are equal!

For any CFG we can create a parser that runs in O(n^3) time.
    Early's algorithm (~emulation of an NPDA)
    Cocke-Younger-Kasami (CYK) algorithm (dynamic programming)

O(n^3) time is clearly unacceptable for a parser in a compiler.

There are large classes of grammars for which we can build parsers that
run in linear time.  The two most important classes are called LL and LR.

    LL stands for 'Left-to-right, Leftmost derivation'.
    LR stands for 'Left-to-right, Rightmost derivation'.

We'll focus on LL parsing, which is what you're going to be using in
your next assignment.  The LR class is larger, but
  - most programming languages have LL grammars
        (or something close enough to use with a couple hacks)
  - LL parsing is generally simpler and easier to understand.

You commonly see LL or LR (or whatever) written with a number in
parentheses after it.  This number indicates how many tokens of
look-ahead are required in order to parse.  Most but not all real
compilers use one token of lookahead.
     Some compilers (e.g., for Fortran) have hacks to get more lookahead
         in special cases.
     The open-source compiler-compiler ANTLR is LL(k).

LL parsers are also called 'top-down', or 'predictive' parsers.
LR parsers are also called 'bottom-up', or 'shift-reduce' parsers.
More on this in the next lecture.

There are several important sub-classes of LR parsers, including SLR and
LALR.  See Sec. 2.3.4 in the text (unassigned) if you're curious.
[
  - Every LL(1) grammar is also LR(1), though right recursion in
    productions (analogous to left recursion, discussed in more detail
    in the next lecture) tends to require very deep stacks and
    complicates semantic analysis.
  - Most but not all LL(1) grammars are also LALR(1).
  - Every CF *language* that can be parsed deterministically has an
    SLR(1) grammar (which is automatically LALR(1) and LR(1)).
  - Every deterministic CFL with the "prefix property" (no valid string
    is a prefix of another valid string -- every language augmented with
    an end-of-file marker fits the bill) has an LR(0) grammar, but it's
    almost certainly too ugly to use.
]

-------------------------------------------
What makes a grammar "nice"?

It's particularly important that it be UNAMBIGUOUS -- no two parse trees
for the same string.  Consider what would have happened if bottom-up
productions 4 and 5 were

    expr          ->  factor | expr op expr

This gives us two parse trees for A - B - C :

Also nice if the parse trees reflect semantic structure, but that's not
essential.  Our bottom-up calculator grammar nicely captures the notion
of precedence:

Here's a bottom-up parse tree for 3 + 4 * 5 :

Consider what would have happened if productions 4 and 5 in the
bottom-up grammar were

    expr          ->  factor | expr op factor

This gives us a different parse tree for 3 + 4 * 5 :

There is nothing _wrong_ with this grammar or this tree, but you can see
why the first one might be easier to translate into a syntax tree.

Our grammar also captures the notion of left associativity:

Here's a bottom-up parse tree for 10 - 4 - 3 :

Consider what would have happened if production 4 was

    expr          ->  term | term add_op expr

This gives us a different parse tree for 10 - 4 - 3 :

Again, there is nothing _wrong_ with this grammar or this tree, but you
can see why the first one might be easier to translate into a syntax tree.

-------------------------------------------
Here is an LL(1) (top-down) grammar for the same language:

    1   program       ->  stmt_list $$
    2   stmt_list     ->  stmt stmt_list | ε
    3   stmt          ->  ID := expr | READ ID | WRITE expr
    4   expr          ->  term term_tail
    5   term_tail     ->  add_op term term_tail | ε
    6   term          ->  factor fact_tail
    7   fact_tail     ->  mult_op factor fact_tail | ε
    8   factor        ->  ( expr ) | ID | LITERAL
    9   add_op        ->  + | -
    10  mult_op       ->  * | /

Like the bottom-up grammar, the top-down one captures precedence, but
most people don't find it as pretty.  Operands of a given operator
aren't in a RHS together, and the resulting parse trees look a bit
strange.

Here's a top-down parse tree for 3 + 4 * 5 :

It still seems to suggest that multiplication groups more tightly than
addition, but in a lopsided sort of way.

The simplicity of the parsing algorithm makes up for this weakness, in
my opinion.  As we'll see later, top-down parsing also makes it easier
to handle special cases and to produce good error messages when the
input program has syntax errors.
    gcc switched from bottom-up to top-down parsing around 2005
    LLVM's clang front end also uses top-down parsing

Also note that the top-down grammar doesn't capture associativity: in
order to parse top-down left-to-right, we end up with a tree that tends
to associate to the right.

Here's a top-down parse tree for 10 - 4 - 3 :

There's no getting around this in the parser.
Have to take care (by hand) to make sure that the *syntax tree*
    reflects associativity correctly.

Next lecture: algorithms for top-down v bottom-up parsing.

===========================================
TOP-DOWN AND BOTTOM-UP PARSING

*** A LL family parser builds a leftmost derivation from the top down.
*** A LR family parser builds a rightmost derivation from the bottom up.

How do we parse a string with the top-down grammar?  You can get the general
idea by building the parse tree incrementally by hand:

    Start at the top and *predict* needed productions on the basis of
    the current left-most non-terminal in the tree and the current input
    token.

Consider our example program again, together w/ the top-down grammar:

                                     P  ->  SL $$
                                     SL ->  S SL | ε
                                     S  ->  ID := E | READ id | WRITE E
                                     E  ->  T TT
                                     TT ->  ao T TT | ε
    read A                           T  ->  F FT
    read B                           FT ->  mo F FT | ε
    sum := A + B                     F  ->  ( E ) | id | lit
    write sum                        ao ->  + | -
    write sum / 2                    mo ->  * | /

Let's build a parse tree:

Notice that at every step along the way, it was clear (unambiguous) what
to do.

We can also get a sense of the bottom-up case with an example, but it
won't be as obvious what's going on.

    Just as a scanner is based on a finite automaton,
    a parser is based on a _pushdown_ automaton
      - basically a finte automaton with a stack
      - makes a decision based on input, state, and top-of-stack symbol
      - chooses a new state and may push or pop the stack

    A top-down parser has a trivial state machine.
      - makes all decisions based on input and top-of-stack symbol
        until it sees end-of-file, at which point it switches to a final
        state if the stack looks right (more on this later)

    A bottom-up parser has a complex state machine.
      - uses current state to make decisions
      - I won't be showing you the state machine in this example

Consider our example program again, together w/ the bottom-up grammar:

                                     P  ->  SL $$
                                     SL ->  SL S | ε
                                     S  ->  ID := E | READ id | WRITE E
    read A                           E  ->  T | E ao T
    read B                           T  ->  F | T mo F
    sum := A + B                     F  ->  ( E ) | id | lit
    write sum                        ao ->  + | -
    write sum / 2                    mo -> * | /

Let's build a parse tree:

The power of bottom-up parsing comes from its ability to recognize
things "after the fact," rather than predicting them up front.
This same power explains why error messages and special-case hacks
are harder to implement in the bottom-up-case: the parser isn't always
sure what's going on until after it's finished.

========================================
LL PARSING and RECURSIVE DESCENT

We can implement top-down parsing in two ways:
  - recursive descent parser
      - written by hand or automatically
  - parse table and a driver
      - written automatically

We'll consider the table-driven option more in a bit.
If you took 173 you probably saw recursive descent; this is a review.

Key idea: set of mutually recursive subroutine, one for each nonterminal.
Each such routine is responsible for discovering a subtree of the parse
tree, rooted at the symbol for which it is named.

Also need a _match_ routine:
    takes a token name as argument and reads a matching token from the
    input stream, or announces an error if it can't.

(How to handle errors comes in the next lecture.  For now, let's assume
we just quit.)

Consider recursive descent routines for the calculator language:

The parser begins by calling the following subroutine:

    procedure pgm
        case input_token of
            id, read, write, $$ : stmt_list; match($$)
            else                  error

Other subroutine include:

    procedure stmt_list
        case input_token of
            id, read, write : stmt; stmt_list
            $$              : skip // epsilon
            else              error

    procedure stmt
        case input_token of
            id    : match(id); match(:=); expr
            read  : match(read); match(id)
            write : match(write); expr
            else    error

    procedure expr
        case input_token of
            id, literal, ( : term; term_tail
            else             error

    procedure term
        case input_token of
            id, literal, ( : factor; fact_tail
            else             error

    procedure term_tail
        case input_token of
            +, -                   : add_op; term; term_tail
            ), id, read, write, $$ : skip // epsilon
            else                     error

    etc.

Each routine knows that it's expecting to see
  - the _yield_ of the symbol for which it is named
It needs to
(1) choose a production with which to generate the symbol's children in
    the parse tree
      - makes this choice based on the upcoming token from the scanner
(2) parse those children one by one
      - match any that are terminals
      - call the appropriate RD routine to parse any that are nonterminals

So how exactly do we know (in a complicated grammar) which production to
use, given an expected nonterminal (root of to-be-fleshed-out subtree)
and upcoming token?
That is, how to label the arms of the switch statements?

-------------------------------------------
PREDICT Sets

If a RHS can start with a given token (directly or indirectly), the
appearance of that token *predicts* its rhs.

If the rhs is epsilon (or something that can derive epsilon), any token
that can follow the LHS anywhere in the grammar predicts the epsilon
production.

An LL(1) parser generator constructs these "predict sets" for you.
We'll consider the algorithm in a future lecture.  It depends on the
following definitions:

    FIRST(α) ≡ {c : α =>* c β}
    FOLLOW(A) ≡ {c : S =>+ α A c β}
    PREDICT(A -> α) ≡ FIRST(α)
        U (if α =>* ε then FOLLOW(A) else ∅)

Here -> is the familiar "goes to" symbol used in productions.
=> means "derives" – can be replaced by.  Note that its LHS doesn't have
    to be a single symbol.
=>* means "derives in zero or more steps"
=>+ means "derives in one or more steps"

FIRST sets capture the "RHS can start with 'c'" case.
FOLLOW sets capture the "RHS can generate ε" case.

NB: conventional notation uses
    lower case letters near the beginning of the alphabet for terminals
    lower case letters near the end of the alphabet for _strings_ of terminals
    upper case letters near the beginning of the alphabet for non-terminals
    upper case letters near the end of the alphabet for arbitrary symbols
    greek letters for arbitrary _strings_ of symbols

*** In a recursive descent parser, if c ∈ PREDICT(A -> α), then the RD
    routine for A will predict A -> α when it sees c on the input.

The calculator language is simple enough that one can figure these out
more or less by inspection.  "Real" languages are too complex for that
to be a reasonable task.  We need an algorithm (stay tuned).

----------------------------------------
MAKING A GRAMMAR LL

Note the implicit assumption that the choice among productions
A -> α and A -> β is always uniquely determined.
What if there is more than one production w/ a LHS of A and a RHSs that
can start w/ the same nonterminal?
Or two RHSs than can generate epsilon?
Or a RHS that can start with c _and_ a RHS that generate epsilon, when c
is in FOLLOW(A)?

In this case the grammar is not LL(1) – by definition.

If you're trying to write an LL(1) grammar, you probably want to avoid
_left recursion_ and _common prefixes_

left recursion
    example
        id_list => ID | id_list , ID
    convert this to
        id_list => ID id_list_tail
        id_list_tail => , ID id_list_tail | ε

common prefixes
    example
        stmt => ID := expr | ID ( arg_list )
    convert this to
        stmt => ID id_stmt_tail
        id_stmt_tail => := expr | ( arg_list )

Both left recursion and common prefixes can be removed mechanically.
Note, however, that there are infinitely many non-LL _languages_, and the
mechanical transformations work on them just fine, so removing these is
necessary but not sufficient to make a grammar LL(1).
Fortunately, the cases that arise in practice, however, can generally be
handled with kludges.

A famous example was the if-then-else statements of Algol-60 and Pascal.
Does

    if A < B then if C < D then X := 1 else X := 2

mean

    if A < B then
        if C < D then
            X := 1
        else
            X := 2

or

    if A < B then
        if C < D then
            X := 1
    else
        X := 2

The hack for top-down parsers was to force the first interpretation with
a bit of special-case code.  If the programmer wanted the sescond
interpretation they needed to type

    if A < B then begin
        if C < D then
            X := 1
    end
    else
        X := 2

Languages since 1970 have fixed this with 'elsif' and 'endif'/'fi'.

    if A < B then
        if C < D then
            X := 1
        fi
    else
        X := 2
    fi

========================================
SYNTAX ERROR RECOVERY

Not ok to announce a single syntax error and stop parsing.
Have to recover and continue, to find additional errors.

"Phrase-level" recovery defines a _set_ of well-defined places to back
out to: e.g. end of current expression, statement, or declaration.

Wirth's formalization for recursive descent
  - On a token mismatch, insert what you expect and print an error message
  - On a null prediction in the RD routine for nonterminal A
    (no matching label in switch)
    delete tokens until you see something in FIRST(A) or FOLLOW(A)
            (also stop if you see $$)
        if the FIRST case, restart the current routine
          - assume what we saw was garbage and can be ignored
        if the FOLLOW case, return
          - assume what we saw was the desired nonterminal, garbled

So the RD routine for statements might be

    procedure stmt
        if not (input_token ∈ FIRST(stmt))  // NB: stmt cannot derive ε
            report_error()
            repeat
                get_next_token()
            until input_token ∈ (FIRST(stmt) U FOLLOW(stmt) U {$$})
        case input_token of
            id    : match(id); match(:=); expr()
            read  : match(read); match(id)
            write : match(write); expr()
            // no else clause needed

That initial if clause can of course be abstracted out into a routine
that is then called at the top of each RD routine:

    procedure check_for_error(sym)
        if not (input_token ∈ FIRST(sym) or sym =>+ ε)
            report_error()
            repeat
                get_next_token()
            until input_token ∈ (FIRST(sym) U FOLLOW(sym) U {$$})

Simpler strategies are possible.
Here's one based on exceptions that avoids need for error handling logic
in all RD routines:
  - On a token mismatch we still insert what we expect
    (and print an error message)
  - On a null prediction, we throw a syntax_error exception.
  - Exceptions are caught by handlers in some subset of RD routines --
    "phrases" in the grammar -- statement, declaration, block, function, etc.

E.g.: replace

    procedure stmt
        case input_token of
            id    : match(id); match(:=); expr()
            read  : match(read); match(id)
            write : match(write); expr()
            else    error()
with

    procedure stmt
        try
            case input_token of
                id    : match(id); match(:=); expr()
                read  : match(read); match(id)
                write : match(write); expr()
                else    throw syntax_error
        except when syntax_error =>
            loop
                if input_token in FIRST(stmt)
                    stmt()          -- try again
                    return
                elsif input_token in (FOLLOW(stmt) U {$$})
                    return          -- caller can probably make progress
                else get_next_token()
                    -- NB: get_next_token is normally called only in match()

NB: accepting a token in FIRST(stmt) and restarting may or may not
be a good idea.  It's always a good idea in Wirth's algorithm, because
we detect errors only at the beginning of the RD routine.  But with
exceptions we may land in the handler halfway through the construct (in
this case, stmt).  At that point we may have already accepted a big
chunk of the statement.  Starting over implicitly means silently
ignoring what we've seen of the statement so far.  It may be better just
to delete to what we hope is the end -- that is, to write the simpler

    procedure stmt
        try
            ...             -- code to parse a statement
        except when syntax_error =>
            while input_token not in (FOLLOW(stmt) U {$$})
                get_next_token()

Fancier strategies are also possible.  Fischer, Milton, and Quiring
developed a particularly pretty "tunable", locally-least-cost recovery
mechanism for table-driven LL(1) (see the book).

-------------------------------------------
The immediate error detection problem
and context-sensitive follow sets

Several error-recovery mechanisms, including the version of Wirth's
described above, will sometimes predict an epsilon production when
calling routines are doomed to discover an error.
    Arguably, we should detect the error before generating epsilon.
    That way we have more context with which to craft recovery.

Example from the book, in the calculator language:

Y := (A * X X*X) + (B * X*X) + (C * X)
           ^ There's a problem here (missing '*' in polynomial).
             Can we tell?

When we're at the point shown in the parse, what recursive descent
routines are active?

                    (dot shows where we are inside)
    program                 P -> . SL $$
    stmt_list               SL -> . S SL
    stmt                    S -> id := . E
    expr                    E -> . T TT
    term                    T -> . F FT
    factor                  F -> ( . E )
    expr                    E -> . T TT
    term                    T -> F . FT
    factor_tail             FT -> * F . FT
    factor_tail             FT -> ?

Now ID can follow expr in some programs (e.g. A := B C := D), and an
expr can end with a factor_tail, so ID is in FOLLOW of factor_tail.  And
since factor_tail and term_tail can generate epsilon, the "obvious"
thing is to return from FT twice, return from T (which thinks it's
done); call from E to TT; return from TT; and return to F _all without
detecting an error of any kind_.  At this point we'll (finally) get a
mismatch between ID and ).  Unfortunately we won't have much information
to work with at that point, and won't be able to make as good a
recovery as we would have liked.

Specifically: match will insert a right paren, allowing F to complete
and return.  T will call FT, which will see X on the input, which is in
FOLLOW(FT), so it will predict and epsilon production and return,
allowing T to return.  E will likewise call TT, which predicts epsilon
and returns, allowing E to return, at which point S will complete and
return, allowing SL to make a recursive call.  Now we have

    X*X) + (B * X*X) + (C * X)

on the input, but we've left the context in which we could continue to
parse more pieces of an expression.

SL will predict S -> id := E.  We'll match id (X), insert :=, call E,
T, and then F.  F will predict F -> id, match X, then return
all the way back to

    SL -> S . SL

at which point we'll make another recursive call to SL and run into
trouble with ) on the input.  We'll delete the ), predict S -> id := E,
and soon run into trouble again when we see * instead of := on the
input.  When the dust settles, our final "correction" will be

    Y := (A * X)  X := X  B := X * X  C := X

If we were smarter, when FT saw X way back at the beginning it would
know that an ID can't follow a factor_tail _in this particular context_
(where we're inside a parenthesized expression, not at the end of an
assignment).  Good error recovery algorithms take this into account.
Wirth showed how to do it in the (better version of) his error-recovery
algorithm for recursive descent.  He adds a _context-sensitive follow set_
parameter to every R.D. subroutine, and uses these, rather than global
FOLLOW, to predict epsilon productions.

So, for example, when F calls E in the example above, it would pass as
E's follow set only { ')' }.  When E calls T it would pass that same
set, plus FIRST(TT) -- i.e., { ')', '+', '-' }.  When T calls FT it
would pass what it, itself, was given, namely { ')', '+', '-' }.
When FT calls itself recursively it would pass this same set yet again.
When the nested FT sees 'id' on the input, it would know there was a
problem.  It would delete the id.  The subsequent * is in FIRST(FT), so
all would be well at that point.  Recognizing the problem early allows
the parser to, effectively, "correct" the input into

    Y := (A * X*X) + (B * X*X) + (C * X)

Not "right", but certainly better.

Generalizing, our top-of-routine error checker now looks like this:

    procedure check_for_error(sym, LAset)
        if not (input_token ∈ FIRST(sym)
                or (sym =>+ ε and input_token ∈ FOLLOW(sym))
            report_error()
            repeat
                get_next_token()
            until input_token ∈ (FIRST(sym) U FOLLOW(sym) U {$$})

We can do something very similar with exception-based recovery, if we
pass context-sensitive FOLLOW sets into appropriate RD routines.

One can also do something similar in table-driven parsers, but for
these there's an even easier alternative: go ahead and do the
epsilon productions, but remember one did so, and when a problem
arises, restore the stack to where it was when the error _should_
have been noticed, and recover from there instead.  There isn't a
good analogue of this approach for the recursive descent case: we
can't "undo" having returned from a bunch of R.D. routines the way
we can restore the explicit stack of the T.D. parser.

ANTLR, by default, uses global FOLLOW sets and Java/C++/C# exception
handlers, but the compiler writer can (by hand) write smarter handlers.

FMQ (a parser generator developed at the Univ. of Wisc., which we used
many years ago) buffered epsilon productions and then undid them,
putting context back on the stack.  FMQ also implements tunable "locally
least cost" repair.

===========================================
TABLE-DRIVEN LL PARSING

Table-driven LL parsing is essentially a different way to think about
recursive descent.  You have a big loop in which you repeatedly look up
an action in a two-dimensional table based on current leftmost
non-terminal and current input token.  The actions are (1) match a
terminal, (2) predict a production, or (3) announce a syntax error.

  - When you predict a production, you replace its LHS (currently at top
    of stack) with the symbols of the RHS, so the new TOS is the first
    symbol of the RHS.

  - This means the stack always contains what you expect to see in the
    future.

                    grammar:                                                
                        program       ->  stmt_list $$                      
                        stmt_list     ->  stmt stmt_list | ε                
                        stmt          ->  ID := expr | READ ID | WRITE expr 
                        expr          ->  term term_tail                    
program:                term_tail     ->  add_op term term_tail | ε         
    read A              term          ->  factor fact_tail                  
    read B              fact_tail     ->  mult_op factor fact_tail | ε      
    sum := A + B        factor        ->  ( expr ) | ID | LITERAL           
    write sum           add_op        ->  + | -                             
    write sum / 2       mult_op       ->  * | /                             

    stack                                       remaining input
    -----                                       ---------------
    pgm                                         read A read B sum ...
    stmt_list $$                                read A read B sum ...
    stmt stmt_list $$                           read A read B sum ...
    READ ID stmt_list $$                        A read B sum := A ...
    ID stmt_list $$                             read B sum := A + ...
    stmt_list $$                                read B sum := A + ...
    stmt stmt_list $$                           read B sum := A + ...
    READ ID stmt_list $$                        B sum := A + B ...
    ID stmt_list $$                             sum := A + B write ...
    stmt_list $$                                sum := A + B write ...
    stmt stmt_list $$                           sum := A + B write ...
    ID := expr stmt_list $$                     := A + B write sum ...
    := expr stmt_list $$                        A + B write sum ...
    expr stmt_list $$                           A + B write sum ...
    term term_tail stmt_list $$                 A + B write sum ...
    factor fact_tail term_tail stmt_list $$     A + B write sum ...
    ID fact_tail term_tail stmt_list $$         + B write sum / 2 $$
    fact_tail term_tail stmt_list $$            + B write sum / 2 $$
    term_tail stmt_list $$                      + B write sum / 2 $$
    add_op term term_tail stmt_list $$          + B write sum / 2 $$
    + term term_tail stmt_list $$               B write sum / 2 $$
    term term_tail stmt_list $$                 B write sum / 2 $$
    factor fact_tail term_tail stmt_list $$     B write sum / 2 $$
    ID fact_tail term_tail stmt_list $$         write sum / 2 $$
    fact_tail term_tail stmt_list $$            write sum / 2 $$
    term_tail stmt_list $$                      write sum / 2 $$
    stmt_list $$                                write sum / 2 $$
    stmt stmt_list $$                           write sum / 2 $$
    WRITE expr stmt_list $$                     sum / 2 $$

    ...     etc

    stmt_list $$                                $$
    $$

Remember: the stack contains all the stuff you expect to see between now
and the end of the program -- what you predict you will see.
These correspond in a recursive descent parser to the concatenation of
the remainders of the current case arm in all the RD routines on the
current call chain.

------------------------------------------------
LL PARSER GENERATORS

The algorithm to build PREDICT sets is tedious (for a "real" sized
grammar), but relatively simple.

    (1) compute FIRST sets and EPS values for symbols
    (2) compute FOLLOW sets for non-terminals (separate from epsilon)
        (this requires computing FIRST sets for some strings)
    (3) compute PREDICT sets for productions
        (this requires computing EPS for some strings)

where

    EPS(α) == if α =>* ε then true else false
    FIRST(α) == {c : α =>* c β}
    FOLLOW(A) == {c : S =>+ α A c β}
    PREDICT(A -> α) == FIRST(α) U (if EPS(α) then FOLLOW(A) ELSE ∅)

Steps (1), (2), and (3) begin with "obvious" facts, and use them to
deduce more facts, until nothing new is learned in a full pass through
the grammar.

What is obvious?  At a minimum:
    If A -> ε, then EPS(A) = true
    c in FIRST(c)

How to deduce?
    If EPS(α) = true and A -> α, then EPS(A) = true
    If A -> B β, then FIRST(A) ⊃ FIRST(B)
    If A -> α B β, then FOLLOW(B) ⊃ FIRST(β)
    If A -> α B (or A -> α B β and EPS(β) = true)
        then FOLLOW(B) ⊃ FOLLOW(A)

This last one is tricky.  It's not true the other way around.
That is, A -> α B does not imply that FOLLOW(A) ⊃ FOLLOW(B).
Consider our calculator grammar.
    ')' is in FOLLOW(E), because F -> ( E )
    $$ is in FOLLOW(S), because P -> SL $$, SL -> S SL, and SL -> ε

Now consider the production S -> write E.
The fact that $$ is in FOLLOW(S) means than $$ is in FOLLOW(E).
But the fact that ')' is in FOLLOW(E) does not mean that
')' is in FOLLOW(S).

Put another way, ')' is in FOLLOW(E) in the context where E was
generated from F, but not necessarily in the context where E was
generated from S.

If any token belongs to the PREDICT set of more than one production
with the same lhs, then the grammar is not LL(1).
A conflict can arise because
    some token c can begin more than one rhs, or
    c can begin one rhs and can also appear after the LHS in some
        valid program, and one possible RHS is epsilon.

Examples 2.33-2.35 in the book work through the generation of a
table-driven parser for the calculator language.

    Fig. 2.22 shows the "obvious" facts in the calculator grammar
    Fig. 2.23 shows the generated FIRST, FOLLOW, and PREDICT sets
    Fig. 2.20 contains the resulting parse table
    Fig. 2.19 contains a parser driver that reads the parse table

Again, the algorithm to generate the parse table

    (1) computes FIRST sets and EPS values for symbols
    (2) computes FOLLOW sets for non-terminals (separate from epsilon)
        (this requires computing FIRST sets for some strings)
    (3) computes PREDICT sets for productions
        (this requires computing EPS for some strings)

Here are the details:

    -- EPS values and FIRST sets for all symbols:
        for all terminals c
            EPS(c) := false;  FIRST(c) := {c}
        for all non-terminals X
            EPS(X) := if X -> ε then true else false
            FIRST(X) := ∅
        repeat
            <outer> for all productions X -> Y1 Y2 ... Yk
                <inner> for i in 1..k
                    add FIRST(Yi) to FIRST(X)
                    if not EPS(Yi) (yet) then continue outer loop
                EPS(X) := true
        until no further progress

    -- Subroutines for strings, similar to the inner loop above:
        function string_EPS(X1 X2 ... Xn):
            for i in 1..n
                if not EPS(Xi) then return false
            return true

        function string_FIRST(X1 X2 ... Xn):
            return_value := ∅
            for i in 1..n
                add FIRST(Xi) to return_value
                if not EPS(Xi) then return

    -- FOLLOW sets for all symbols:
        for all symbols X, FOLLOW(X) := ∅
        repeat
            for all productions A -> α B β
                add FIRST(β) to FOLLOW(B)
            for all productions A -> α B
                    or A -> α B β, where string_EPS(β) = true
                add FOLLOW(A) to FOLLOW(B)
        until no further progress

    -- PREDICT sets for all productions:
        for all productions A -> α
            PREDICT(A -> α) := string_FIRST(α)
                U (if string_EPS(α) then FOLLOW(A) else ∅)

At the end, the grammar is LL(1) iff all the PREDICT sets for
productions with the same LHS are disjoint

----------------------------------------
SYNTAX ERROR RECOVERY (reprise)

Natural adaptation of phrase-level recovery to table-driven top-down
parsing:
  - When we encounter an error in match (TOS is a token that doesn't match
    the input), we print a message and pop the stack (pretend to have
    seen the desired token).

  - When we encounter an error entry in the table (non-terminal A at TOS),
    we delete tokens until we find something in FIRST(A) or FOLLOW(A).
    If in FIRST(A), we continue the main loop of the driver.  If in
    FOLLOW(A), we pop the stack first.

    ($$ is a special case: if we see that, we pop the stack and continue
    the main loop.)

    More generally, we may define a set of "starter symbols" that are too
    dangerous to delete (begin, left paren, procedure, ...), because they
    are likely to presage subsequent structure.  Treat them like $$.
    Hopefully they'll be in FIRST of something deeper in the stack.  If
    not, we'll eventually end up with $$ on the stack and remaining input,
    at which point we print a message and die.

As in the recursive descent case, we probably want to consider the
immediate error detection problem.

Adding context-sensitive follow sets to the stack is a nuisance, however.

Much easier, when we predict an epsilon production, to remember that we
did so, and buffer what we popped off the stack.
  - If we accept a new token of real input, we can toss the buffer.
  - If we run into an error before then, we put the buffered symbols
    back on the stack and initiate error recovery as shown above.

Recall the example of the Immediate Error Detection problem

    Y := (A * X X*X) + (B * X*X) + (C * X)
               ^ There's a problem here (missing '*' in polynomial).
                 Can we tell?

Consider the table-driven case.  When we reach the bad point in the input,
we're in the following state:

stack:  FT TT ) FT TT SL $$     input:  X * X) + (B * X * X) + (C * X) $$
       top

If we do not address the immediate error detection problem, then
  - The parse table predicts FT -> ε, and we pop FT from the stack
  - The parse table predicts TT -> ε, and we pop TT from the stack
  - We have a mismatch between ) in the stack and X on the input.  We
    announce an error, insert the right paren, and match it.

stack:  FT TT SL $$     input:  X * X) + (B * X * X) + (C * X) $$

Continuing,
  - The parse table predicts FT -> ε, and we pop FT from the stack
  - The parse table predicts TT -> ε, and we pop TT from the stack
  - The parse table predicts SL -> S SL and then S -> id := E, whereupon
    we match the id, leaving us with:

stack:  := E SL $$     input:  * X) + (B * X * X) + (C * X) $$

  - Now we have a mismatch between := in the stack and * on the input.
    We announce another error, insert the :=, and match it:

stack:  E SL $$     input:  * X) + (B * X * X) + (C * X) $$

  - At this point the parse table has no prediction for (E, *).
    We delete the star, at which point X is in FIRST(E), allowing us to
    predict E -> T TT and T -> F FT and F -> id.  We match the id,
    leaving us with

stack:  FT TT SL $$     input:  ) + (B * X * X) + (C * X) $$

  - The parse table predicts FT -> ε, and we pop FT from the stack
  - The parse table predicts TT -> ε, and we pop TT from the stack

stack:  SL $$     input:  ) + (B * X * X) + (C * X) $$

  - Now we have no prediction for (SL, )).  We delete ) + (, at which
    point B is in FIRST(SL), allowing us to predict SL -> S SL and
    S -> id := E.  We match the id, leaving us with

stack:  := E SL $$     input:  * X * X) + (C * X) $$

So far, we have "corrected" the input to read

    Y := (A * X)  X := X  B * X * X) + (C * X)
                           ^
                and we're here in the parse

Continuing in this fashion, we end up pretending that the input was

    Y := (A * X)  X := X  B := X * X  C := X

------------------

We can do much better with _context-sensitive follow sets_, as in Wirth's
algorithm.  These are a bit of a nuissance to generate and track.  An
attractive alternative is to buffer epsilon productions and then restore
the stack when we encounter an error.  This makes error recovery a
little slower, but because that's the uncommon case we don't really care.

When we reach the bad point in the parse we have

stack:  FT TT ) FT TT SL $$     input:  X * X) + (B * X * X) + (C * X) $$
       top

  - As before, we predict FT -> ε and TT -> ε, but WE
    REMEMBER THAT WE DID SO.  (We don't yet know that we have an error.)

stack:  ) FT TT SL $$     input:  X * X) + (B * X * X) + (C * X) $$

  - Again as before, we announce an error when X doesn't match ).
    Before trying to recover, however, we put back the buffered
    productions, and we remember that X (id) didn't work -- that is,
    it's in FOLLOW(FT) but not in CS-FOLLOW(FT).

Our stack is restored to:

stack:  FT TT ) FT TT SL $$     input:  X * X) + (B * X * X) + (C * X) $$

    Now we want to delete tokens until we find something that is in
    FIRST(FT) or FOLLOW(FT) \ {id} = {+, -, ), read, write, $$}.
    [NB: that's still not CS-FOLLOW, which is simply {+, -, )}.]

  - We delete input until we find something in one of these sets (or $$).
    In this case, * is in FIRST(FT), so we delete the X and predict
    FT -> * F FT:

stack:  * F FT TT ) FT TT SL $$     input:  * X) + (B * X * X) + (C * X) $$

  - Now we match the star, predict F -> id, and match the id, giving us

stack:  FT TT ) FT TT SL $$     input:  ) + (B * X * X) + (C * X) $$

  - At this point we're back in sync.  We parse the remainder of the
    input without incident.  We've "repaired" the input to

    Y := (A * X*X) + (B * X*X) + (C * X)

    with only one error message instead of 9.

Arranging for immediate error detection won't always result in better
"corrections," but it tends to.

--------------------------------------------------
| Locally least-cost error recovery (ala FMQ)
|
|     Perform the least-cost modification to the input that allows you to
|     accept one more REAL token.  Do not change the state of the parser.
|     Modify the input stream and re-start parsing.  Whenever we want to
|     "throw away" stuff near the top of the stack we do it by pushing its
|     yield onto the beginning of the input stream.
|
|     Consider first the insertion-only algorithm.  It requires an
|     insert-correctable language.  It also requires buffering of epsilon
|     moves in an SLL-style parser.
|         - any input can be repaired (even the Gettysburg Address).
|         - repairs can be tuned (by tweaking insertion costs)
|         - table-driven and therefore fully automatic
|         - linear time and space requirements
|         - locally optimal
|
|     Cost C(t) for each terminal.  Higher C(t) means t is less likely to
|     be inserted.  C($$) = infinity.  C(ε) = 0.
|     Special symbol ?? with C(??) = infinity.
|     Extend C to strings in the obvious way.
|
|     Some heuristics:
|         - insertion should usually be cheaper than deletion
|         - common operators have lower cost than uncommon operators in
|             same place in the grammar [C(*) < C(%)].
|         - closing symbols have lower cost than opening symbols
|             [C(BEGIN) > C(END)]
|         - noise symbols have very low cost [, ; DO]
|
|     Tables:
|         S : symbols --> terminal strings
|             S(A) is the lowest cost string derivable from A.
|             S(a) is of course a.
|         E : symbol/terminal pairs --> terminal strings
|             if A does not derive a string containing a, then
|                 E(A,a) = ??
|             else E(A,a) = lowest cost prefix w of a in A; that is,
|                 lowest cost w such that A ==>* wax
|
|             if a = b, then E(a,b) = ε
|             else E(a,b) = ??
|
|         S table is pretty small
|         E table is moderately large, but manageable
|
|     Find_Insert (stack XN ... X2 X1, token a) returns (string ins)
|         ins := ??
|         prefix := ε
|         for i := N downto 1 do
|             if C(prefix) >= C(ins)
|                 {no better insertion is possible}
|                 return
|             if C(prefix CAT E(Xi,a)) < C(ins)
|                 {better insertion found}
|                 ins := prefix CAT E(Xi,a)
|             prefix := prefix CAT S(Xi)
|
| Insertion-only correction requires insert-correctable language.
| Most practical languages are at least close.
|
| Allowing deletions, too, makes for better quality repairs, and works for
| any LL(1) language.
|
|     second cost vector
|         D(a) = cost of deleting a
|         again extended to strings in obvious way
|
|     embed the previous algorithm in a second loop
|     repeatedly consider deleting more and more tokens, each time
|         executing the above routine with the remaining input, until
|         the cost of deleting additional tokens exceeds the cost of
|         the current best repair.
|
|     LL_repair (stack XN ... X2 X1, input a1 a2 ...)
|             returns (string best_ins, int best_del)
|         i := 0 -- number of tokens we're considering deleting
|         <best_ins, best_del> := <??, 0>
|         loop
|             cur_ins := Find_Insert (XN ..., a[i+1])
|             if C(cur_ins) + D(a1...a[i]) < C(best_ins) + D(a1...a[best_del])
|                 <best_ins, best_del> := <cur_ins, i>
|             i +:= 1
|             if D(a1...a[i]) > C(best_ins) + D(a1...a[best_del])
|                 return
|         end loop
|
| ======================================================
|
| LR PARSING
|
| LR parsers are almost always table-driven.
| Like a table-driven LL parser, an LR parser uses a big loop in which it
| repeatedly inspects a two-dimensional table to find out what action to take.
| Unlike the LL parser, however, the LR driver has non-trivial state
| (like a DFA), and the table is indexed by current input token and
| current state.
| The stack contains a record of what has been seen SO FAR (NOT what is
| expected to be seen in the future), interspersed with states.
|
| --------------------------------------------------
|
| Recall some theory:
|
|     A scanner is a DFA.  It can be specified with a state diagram, as
|     we saw.
|
|     An LL or LR parser is a PDA (Early's alg. and the CYK alg. do NOT use
|     PDAs).  A PDA can be specified with a state diagram and a stack.  The
|     state diagram looks just like a DFA state diagram, except the arcs are
|     labeled with <input symbol, top-of-stack symbol> pairs, and in addition
|     to moving to a new state the PDA has the option of pushing or popping a
|     finite number of symbols onto/off the stack.
|
|     An LL(1) PDA has only one state!  (Well, actually two; it needs a second
|     one to accept with, but that's all.)  It's pretty simple.  All the arcs
|     are self loops; the only difference between them is the choice of whether
|     to push or pop.  The final state is reached by a transition that sees
|     EOF on the input and the stack.
|
|     An SLR/LALR/LR PDA has multiple states.  It is a "recognizer," not
|     a "predictor."  It builds a parse tree from the bottom up.  The states
|     keep track of which productions we *might* be in the middle of.
|
| ---------------------------
|
| To illustrate LR parsing (which you won't be using), re-consider our
| original grammar:
|
|     program       ->  stmt_list $$
|     stmt_list     ->  stmt_list stmt | stmt
|     stmt          ->  ID := expr | READ ID | WRITE expr
|     expr          ->  term | expr add_op term
|     term          ->  factor | term mult_op factor
|     factor        ->  ( expr ) | ID | LITERAL
|     add_op        ->  + | -
|     mult_op       ->  * | /
|
| This grammar is SLR(1), a particularly nice class of bottom-up grammar.
| [NB: it isn't exactly what I gave you originally; I've eliminated the epsilon
| production to simplify the presentation.]
|
| < walk through a bottom-up parse of the example program
|     illustrate it with growing-together pieces of the tree >>
|
|     read A
|     read B
|     sum := A + B
|     write sum
|     write sum / 2
|
|     0                                             read A read B ...
|     0 READ 3                                      A read B ...
|     0                                             S read B ...
|     0                                             SL read B ...
|     0 stmt_list 1                                 read B sum ...
|     0 stmt_list 1 READ 3                          B sum := ...
|     0 stmt_list 1                                 S sum := ...
|     0                                             SL sum := ...
|     0 stmt_list 1                                 sum := A ...
|     0 stmt_list 1 ID 2                            := A + ...
|     0 stmt_list 1 ID 2 := 5                       A + B ...
|     0 stmt_list 1 ID 2 := 5                       F + B ...
|     0 stmt_list 1 ID 2 := 5                       T + B ...
|     0 stmt_list 1 ID 2 := 5 term 7                + B write ...
|     0 stmt_list 1 ID 2 := 5                       E + B write ...
|     0 stmt_list 1 ID 2 := 5 expr 9                + B write ...
|     0 stmt_list 1 ID 2 := 5 expr 9 + 10           B write sum ...
|     0 stmt_list 1 ID 2 := 5 expr 9 + 10           F write sum ...
|     0 stmt_list 1 ID 2 := 5 expr 9 + 10           T write sum ...
|     0 stmt_list 1 ID 2 := 5 expr 9 + 10 term 13   write sum write ...
|     0 stmt_list 1 ID 2 := 5                       E write sum write ...
|     0 stmt_list 1 ID 2 := 5 expr 9                write sum write ...
|     0 stmt_list 1 ID 2 := 5 expr 9                write sum write ...
|     0 stmt_list 1                                 S write sum write ...
|     0                                             SL write sum write ...
|     0 stmt_list 1                                 write sum write ...
|     0 stmt_list 1 WRITE 4                         sum write sum / ...
|     0 stmt_list 1 WRITE 4                         F write sum / ...
|     0 stmt_list 1 WRITE 4                         T write sum / ...
|     0 stmt_list 1 WRITE 4 term 7                  write sum / ...
|     0 stmt_list 1 WRITE 4                         E write sum / ...
|     0 stmt_list 1 WRITE 4 expr 6                  write sum / ...
|     0 stmt_list 1                                 S write sum / ...
|     0                                             SL write sum / ...
|     0 stmt_list 1                                 write sum / ...
|     0 stmt_list 1 WRITE 4                         sum / 2 ...
|     0 stmt_list 1 WRITE 4                         F / 2 ...
|     0 stmt_list 1 WRITE 4                         T / 2 ...
|     0 stmt_list 1 WRITE 4 term 7                  / 2 $$
|     0 stmt_list 1 WRITE 4 term 7 / 11             2 $$
|     0 stmt_list 1 WRITE 4 term 7 / 11             F $$
|     0 stmt_list 1 WRITE 4                         T $$
|     0 stmt_list 1 WRITE 4 term 7                  $$
|     0 stmt_list 1 WRITE 4                         E $$
|     0 stmt_list 1 WRITE 4 expr 6                  $$
|     0 stmt_list 1                                 S $$
|     0                                             SL $$
|     0 stmt_list 1                                 $$
|     0                                             P
|     [done]
|
| The above states are wrt the following CFSM (characteristic finite state
| machine):
|
| 0:
|     P -> . SL $$            on SL shift and goto 1
|     ---------
|     SL -> . SL S
|     SL -> . S               on S shift and reduce (by 1, recognizing SL)
|     S -> . ID := E          on ID shift and goto 2
|     S -> . READ ID          on READ shift and goto 3
|     S -> . WRITE E          on WRITE shift and goto 4
|
| 1:
|     P -> SL . $$            on $$ shift and reduce (by 2, recognizing P)
|     SL -> SL . S            on S shift and reduce (by 2, recognizing SL)
|     ---------
|     S -> . ID := E          on ID shift and goto 2
|     S -> . READ ID          on READ shift and goto 3
|     S -> . WRITE E          on WRITE shift and goto 4
|
| 2:
|     S -> ID . := E          on := shift and goto 5
|
| 3:
|     S -> READ . ID          on ID shift and reduce (by 2, recognizing S)
|
| 4:
|     S -> WRITE . E          on E shift and goto 6
|     ---------
|     E -> . T                on T shift and goto 7
|     E -> . E add_op T
|     T -> . F                on F shift and reduce (by 1, recognizing T)
|     T -> . T mul_op F
|     F -> . ( E )            on ( shift and goto 8
|     F -> . ID               on ID shift and reduce (by 1, recognizing F)
|     F -> . LITERAL          on LITERAL shift and reduce (by 1, recognizing F)
|
| 5:
|     S -> ID := . E          on E shift and goto 9
|     ---------
|     E -> . T                on T shift and goto 7
|     E -> . E add_op T
|     T -> . F                on F shift and reduce (by 1, recognizing T)
|     T -> . T mul_op F
|     F -> . ( E )            on ( shift and goto 8
|     F -> . ID               on ID shift and reduce (by 1, recognizing F)
|     F -> . LITERAL          on LITERAL shift and reduce (by 1, recognizing F)
|
| 6:
|     S -> WRITE E .          on add_op shift and goto 10
|     S -> E . add_op T       OW reduce (by 2, recognizing S)
|
| 7:  E -> T .                on mul_op shift and goto 11
|     T -> T . mul_op F       OW reduce (by 1, recognizing E)
|
| 8:
|     F -> ( . E )            on E shift and goto 12
|     ---------
|     E -> . T                on T shift and goto 7
|     E -> . E add_op T
|     T -> . F                on F shift and goto reduce (by 1, recognizing T)
|     T -> . T mul_op F
|     F -> . ( E )            on ( shift and goto 8
|     F -> . ID               on ID shift and reduce (by 1, recognizing F)
|     F -> . LITERAL          on LITERAL shift and reduce (by 1, recognizing F)
|
| 9:
|     S -> ID := E .          on add_op shift and goto 10
|     E -> E . add_op T       OW reduce (by 3, recognizing S)
|
| 10:
|     E -> E add_op . T       on T shift and goto 13
|     ---------
|     T -> . F                on F shift and reduce (by 1, recognizing T)
|     T -> . T mul_op F
|     F -> . ( E )            on ( shift and goto 8
|     F -> . ID               on ID shift and reduce (by 1, recognizing F)
|     F -> . LITERAL          on LITERAL shift and reduce (by 1, recognizing F)
|
| 11:
|     T -> T mul_op . F       on F shift and reduce (by 3, recognizing T)
|     ---------
|     F -> . ( E )            on ( shift and goto 8
|     F -> . ID               on ID shift and reduce (by 1, recognizing F)
|     F -> . LITERAL          on LITERAL shift and reduce (by 1, recognizing F)
|
| 12:
|     F -> ( E . )            on ) shift and reduce (by 3, recognizing F)
|     E -> E . add_op T       on add_op shift and goto 10
|
| 13:
|     E -> E add_op T .       on mul_op shift and goto 11
|     T -> T . mul_op F       OW reduce (by 3, recognizing E)

$$

$$

mlscott
See the PLP Companion Site, Sec. 2.4.1


