TOP-DOWN AND BOTTOM-UP PARSING

*¥** A LL family parser builds a leftmost derivation from the top down.
*¥** A LR family parser builds a rightmost derivation from the bottom up.

How do we parse a string with the top-down grammar? You can get the general
idea by building the parse tree incrementally by hand:

Start at the top and *predict* needed productions on the basis of
the current left-most non-terminal in the tree and the current input
token.

Consider our example program again, together w/ the top-down grammar:
P -> SL $$

SL - SSL I €
S -> 1ID :=E | READ id | WRITE E

E > TTT
TT -> ao T TT | €
read A T -> F FT
read B FT -> mo F FT | €
sum := A + B F -> CE)D) I id | 1it
write sum ao -> + | -
write sum / 2 $$ mo -> * | /

Let's build a parse tree:

S
A ‘k \%i tj e
3 U

Notice that at every step along the way, it was clear (unambiguous) what
to do.

We can also get a sense of the bottom-up case with an example, but it
won't be as obvious what's going on.

Just as a scanner 1is based on a finite automaton,

a parser is based on a _pushdown_ automaton
- basically a finte automaton with a stack
- makes a decision based on input, state, and top-of-stack symbol
- chooses a new state and may push or pop the stack

A top-down parser has a trivial state machine.
- makes all decisions based on input and top-of-stack symbol
until it sees end-of-file, at which point it switches to a final
state if the stack looks right (more on this later)

A bottom-up parser has a complex state machine.
- uses current state to make decisions

- I won't be showing you the state machine in this example

Consider our example program again, together w/ the bottom-up grammar:

P -> SL $%
SL -> SLS | ¢
S -> 1ID :=E | READ id | WRITE E
read A E > TIEao T
read B T -> F | TmoF
sum := A + B F -> CE)D) | id | 1lit
write sum ao -> + | -
write sum / 2 $$ mo -> * | /

Let's build a parse tree:

i
.~
~ 1
jf\\\ e
£ 5 \
{/’/sc_ ﬁ \\ \ ___(/;ik\\
S P : B T [
.7 \ 1l \ ']
1 s 2 F ao ¥ P Rl
= /\ /\\ \ lk | l |]] |

i :_é wee 14 ~wivte Ji %

sum SHM

read 25 read Eﬁ ;;M
The power of bottom-up parsing comes from its ability to recognize
things "after the fact," rather than predicting them up front.

This same power explains why error messages and special-case hacks

are harder to implement in the bottom-up-case: the parser isn't always
sure what's going on until after it's finished.

mlscott
See the PLP Companion Site, Sec. 2.4.1

