TABLE-DRIVEN LL PARSING

Table-driven LL parsing is essentially a different way to think about
recursive descent. You have a big loop in which you repeatedly look up
an action in a two-dimensional table based on current leftmost
non-terminal and current input token. The actions are (1) match a
terminal, (2) predict a production, or (3) announce a syntax error.

- When you predict a production, you replace its LHS (currently at top
of stack) with the symbols of the RHS, so the new TOS is the first
symbol of the RHS.

- This means the stack always contains what you expect to see in the

future.
grammar:

program -> stmt_list $$

stmt_list -> stmt stmt_list | €

stmt -> ID := expr | READ ID | WRITE expr

expr -> term term_tail

program: term_tail -> add_op term term_tail | €

read A term -> factor fact_tail
read B fact_tail -> mult_op factor fact_tail | €
sum := A + B factor -> (Cexpr) | ID | LITERAL
write sum add_op -> 4+ | -
write sum / 2 mult_op - * |/
stack remaining input
pgm read A read B sum ...
stmt_list $$ read A read B sum ...
stmt stmt_list $$ read A read B sum ...
READ ID stmt_list $$ A read B sum := A ...
ID stmt_list $% read B sum := A +
stmt_list $$ read B sum := A +
stmt stmt_list $$ read B sum := A + ...
READ ID stmt_list $$% B sum := A +B ...
ID stmt_list $% sum := A + B write ...
stmt_list $$ sum := A + B write ...
stmt stmt_list $$ sum := A + B write ...
ID := expr stmt_list $$:= A + B write sum ...

B write sum ...
B write sum ...
B write sum .
B write sum ...
write sum / 2 $$
write sum / 2 $$
write sum / 2 $$
write sum / 2 $$%
2
2

:= expr stmt_list $$

expr stmt_list $$

term term_tail stmt_list $$

factor fact_tail term_tail stmt_list $$
ID fact_tail term_tail stmt_list $$
fact_tail term_tail stmt_list $$
term_tail stmt_list $$

add_op term term_tail stmt_list $$

+ term term_tail stmt_list $$

term term_tail stmt_list $$

factor fact_tail term_tail stmt_list $$

write sum / 2 $$
write sum / 2 $$
write sum / 2 $$

oW+ + + + > > >
o wwwmw+ + + +

ID fact_tail term_tail stmt_list $$ write sum / 2 $$
fact_tail term_tail stmt_list $$ write sum / 2 $$
term_tail stmt_list $$ write sum / 2 $%
stmt_list $$ write sum / 2 $$
stmt stmt_list $$ write sum / 2 $$
WRITE expr stmt_list $$ sum / 2 $$

etc
stmt_list $$ $$
$$

Remember: the stack contains all the stuff you expect to see between now
and the end of the program -- what you predict you will see.

These correspond in a recursive descent parser to the concatenation of
the remainders of the current case arm in all the RD routines on the
current call chain.

LL PARSER GENERATORS

The algorithm to build PREDICT sets is tedious (for a "real" sized
grammar), but relatively simple.

(1) compute FIRST sets and EPS values for symbols

(2) compute FOLLOW sets for non-terminals (separate from epsilon)
(this requires computing FIRST sets for some strings)

(3) compute PREDICT sets for productions
(this requires computing EPS for some strings)

where

EPS(a) == if a =>* € then true else false

FIRST(a) == {c : a =>* c B}

FOLLOWCA) == {c : S =>+ a A c B}

PREDICTCA -> a) == FIRST(a) U (if EPS(a) then FOLLOWCA) ELSE @)

Steps (1), (2), and (3) begin with "obvious" facts, and use them to
deduce more facts, until nothing new is learned in a full pass through
the grammar.

What is obvious? At a minimum:
If A -> €, then EPSCA) = true
c in FIRST(c)

How to deduce?
If EPSCa) = true and A -> a, then EPSCA) = true
If A -> B B, then FIRSTCA) > FIRST(B)
If A -> o B B, then FOLLOW(B) > FIRST(R)
If A -> a B (or A -> a BB and EPS(B) = true)
then FOLLOW(B) > FOLLOW(CA)

This last one is tricky. It's not true the other way around.
That is, A -> a B does not imply that FOLLOWCA) > FOLLOW(B).
Consider our calculator grammar.

'")'" is in FOLLOW(E), because F -> (E)

$$ is in FOLLOW(S), because P -> SL $$, SL -> S SL, and SL -> ¢

Now consider the production S -> write E.

The fact that $$ is in FOLLOW(S) means than $$ is in FOLLOW(E).
But the fact that ')' is in FOLLOW(E) does not mean that

"Y' is in FOLLOW(S).

Put another way, ')' is in FOLLOW(E) in the context where E was
generated from F, but not necessarily in the context where E was
generated from S.

If any token belongs to the PREDICT set of more than one production
with the same lhs, then the grammar is not LL(1).
A conflict can arise because
some token c can begin more than one rhs, or
Cc can begin one rhs and can also appear after the LHS in some
valid program, and one possible RHS is epsilon.

Examples 2.33-2.35 in the book work through the generation of a
table-driven parser for the calculator language.

Fig. 2.22 shows the "obvious" facts in the calculator grammar
Fig. 2.23 shows the generated FIRST, FOLLOW, and PREDICT sets
Fig. 2.20 contains the resulting parse table

Fig. 2.19 contains a parser driver that reads the parse table

Again, the algorithm to generate the parse table

(1) computes FIRST sets and EPS values for symbols

(2) computes FOLLOW sets for non-terminals (separate from epsilon)
(this requires computing FIRST sets for some strings)

(3) computes PREDICT sets for productions
(this requires computing EPS for some strings)

Here are the details:

-- EPS values and FIRST sets for all symbols:
for all terminals c
EPS(c) := false; FIRST(c) := {c}
for all non-terminals X
EPS(X) := if X -> € then true else false

FIRST(X) := @
repeat
<outer> for all productions X -> Y1 Y2 ... Yk

<inner> for i in 1..k
add FIRST(Y1i) to FIRST(X)
if not EPS(Yi) (yet) then continue outer loop
EPS(X) := true
until no further progress

-- Subroutines for strings, similar to the inner loop above:
function string_EPS(X1 X2 ... Xn):
for 1 in 1..n
if not EPS(Xi) then return false
return true

function string_FIRST(X1 X2 ... Xn):
return_value := @
for i in 1..n
add FIRST(Xi) to return_value
if not EPS(Xi) then return

-- FOLLOW sets for all symbols:
for all symbols X, FOLLOW(X) := @
repeat
for all productions A -> a B B
add FIRST(B) to FOLLOW(B)
for all productions A -> a B
or A -> a B B, where string_EPS(B) = true
add FOLLOWCA) to FOLLOW(B)
until no further progress

-- PREDICT sets for all productions:
for all productions A -> a
PREDICTCA -> a) := string_FIRST(a)
U (1f string_EPSCa) then FOLLOW(CA) else @)

At the end, the grammar is LL(1) iff all the PREDICT sets for
productions with the same LHS are disjoint

SYNTAX ERROR RECOVERY (reprise)

Natural adaptation of phrase-level recovery to table-driven top-down
parsing:
- When we encounter an error in match (TOS is a token that doesn't match
the input), we print a message and pop the stack (pretend to have
seen the desired token).

- When we encounter an error entry in the table (non-terminal A at TO0S),
we delete tokens until we find something in FIRST(CA) or FOLLOW(A).
If in FIRSTCA), we continue the main loop of the driver. If in
FOLLOWCA), we pop the stack first.

($$ is a special case: if we see that, we pop the stack and continue
the main loop.)

More generally, we may define a set of "starter symbols" that are too
dangerous to delete (begin, left paren, procedure, ...), because they
are likely to presage subsequent structure. Treat them like $%.
Hopefully they'll be in FIRST of something deeper in the stack. If
not, we'll eventually end up with $$ on the stack and remaining input,
at which point we print a message and die.

As in the recursive descent case, we probably want to consider the
immediate error detection problem.

Adding context-sensitive follow sets to the stack is a nuisance, however.

Much easier, when we predict an epsilon production, to remember that we
did so, and buffer what we popped off the stack.
- If we accept a new token of real input, we can toss the buffer.
- If we run into an error before then, we put the buffered symbols
back on the stack and initiate error recovery as shown above.

mlscott
See the PLP Companion Site, Sec. 2.4.1

