
Naming, scoping, binding, and related notions (October 5 and 7, 2020)

==
Intro to Naming: Scope, lifetime, bindings, and storage management

A name is exactly what you think it is.
Most names are identifiers, though symbols (like '+') can also be names.

A binding is an association between two things, such as a name and
the thing it names.

The scope of a binding is the part of the program (textually) in which
the binding is active.

Binding time is the point at which a binding is created or, more
generally, the point at which any implementation decision is made.
Examples include

language design time
program structure, possible types

language implementation time
I/O, arithmetic overflow, type equality (if unspecified in manual)

program writing time
algorithms, names

compile time
plan for data layout

link time
layout of whole program in memory

load time
choice of physical addresses

run time
value/variable bindings, sizes of strings
subsumes

program start-up time
module entry time
elaboration time (point a which a declaration is first "seen")
procedure entry time
block entry time
statement execution time

The terms static and dynamic are generally used to refer to things bound
before run time and at run time, respectively. Clearly "static" is a coarse
term. So is "dynamic."

What gets bound when varies from language to language.

It is difficult to overstate the importance of binding times in
programming languages.

In general, early binding times are associated with greater efficiency.
Later binding times are associated with greater flexibility.
Languages with lots of early binding tend to be compiled.
Languages with lots of late binding tend to be interpreted.

Today I want to talk in particular about the binding of identifiers to
the things they name. I'll use the name "object," informally, for
anything that can have a name.

--
Scope and Lifetime

Fundamental to all programming languages is the ability to name things,
i.e., to refer to things using symbolic identifiers rather than values,
addresses, etc. Things we might name include

constants
variables
functions
parameters
modules
classes
fields
types
exceptions
labels
threads
...

Anything that isn't figured out until run time (values of variables and
parameters in particular) has to be represented by data (bits) in memory.
Some but not all data have names.

Dynamic storage in C, Ada 95, or Fortran 90, for example, is referenced
through pointers, not names. Similarly, dynamic storage in Java or C#
is referred to indirectly through references.

Let's call anything that is represented by bits in memory as an object.
(This is not using the term in the OO programming sense.)

The lifetime of an object runs from when the space for it is allocated
until it is reclaimed.
The lifetime of a binding runs from when the name is first associated
with the object until it is no longer associated with it (and never will
be again).
A binding may not be active (usable) throughout its lifetime. It may be
hidden by a nested use of the same name, or it may be valid only when
running a given function or a method of a given class.

Typical timeline:

creation of object
creation of binding
uses of name that is bound to object
(temporary) deactivation (hiding) of binding
reactivation of binding
destruction of binding
destruction of object

If an object outlives its binding it's garbage.
If a binding outlives its object it's a dangling reference.

The scope of a binding is the textual region of a program in which the
binding is active. In most but not all languages this scope is
determined at compile time.

That is, nothing has to happen at run time to activate and deactivate
bindings; the compiler has already figured out what's visible where.

In such languages, scope is sometimes called lexical extent; lifetime is
sometimes called dynamic extent.

(More on the rules that determine scope in the following lecture.)

In addition to talking about the "scope of a binding," we sometimes use
the word 'scope' as a noun all by itself, without an indirect object.
A "scope" is a program region of maximal size in which no bindings are
destroyed.

In many, but not all languages, the scope of a binding is determined by
a declaration. From the perspective of formal semantics, the declaration
can be thought of as code that actively establishes visibility, even if the
compiler is smart enough to do all the work ahead of time.

Algol 68 introduced the term elaboration for the "execution" of
declarations. It's a useful concept because some declarations do more
than establish bindings, and some of the extra stuff has to happen at
run time. Elaboration can

- allocate space
- perform dynamic semantic checks (is the lower bound of this array <=

the upper bound?) and perhaps raise an exception
- start a thread
- ...

And in some languages (e.g., Python & Ruby), declarations really are executed:

class foo
if A > B

method bar() ...
else

method bar() ...

In most languages with subroutines, we open a new scope on subroutine entry.
We create bindings for new local variables, deactivate bindings for global
variables that will be hidden by local ones (the globals are said to
have a "hole" in their scope), and then make references to variables.
On subroutine exit, we destroy bindings for local variables and
reactivate bindings for nonlocal variables that were deactivated.

The referencing environment of a statement or expression is the set
of active bindings. A referencing environment corresponds to a
collection of scopes that are examined (in order) to find a binding.
Scope rules determine that collection and its order.

--
Storage Management -- for objects with various lifetimes.

Static allocation for
code
globals
own/static variables
explicit constants (strings, sets, other aggregates)

some scalars may be global;
others may simply be embedded in instructions

Central stack (chap. 9) for
parameters
local variables
temporaries
bookkeeping information

Why a stack?
allocate space for recursive routines
reuse space
minimize management overhead

Heap (chap. 7) for
dynamic allocation

Maintaining the run-time stack
Contents of a stack frame

bookkeeping: return PC (dynamic link), saved registers, line
number, static link, etc.

arguments and returns
local variables
temporaries

Maintenance of stack is responsibility of "calling sequence"
and subroutine "prologue" and "epilogue" (more on this in Chap. 9)

space is saved by putting as much in the prologue and epilogue
as possible

time may be saved by putting stuff in the caller instead, or
by combining what's known in both places (interprocedural
optimization)

Local variables and arguments are assigned fixed offsets from
the stack pointer or frame pointer at compile time

Access to non-local variables is usually implemented using static links.
Each frame has a pointer to the frame of the (correct instance of)
the routine inside which it was declared. In the absence of formal
subroutines, "correct" means closest to the top of the stack.

You access a variable in a scope k levels out by following
k static links and then using the known offset within the
frame thus found.

NB: many languages allow you to declare nested scopes within the body
of a subroutine. (OCaml, for example, does this all the time.)
Declarations in these nested scopes hide outer variables with the same
name, just as declarations at the tops of subroutines do. These nested
scopes are generally considered to be a good idea, esp. since the
implementation can roll space management into that of the surrounding
routine: then the run-time overhead is zero.

Next lecture: static and lexical scope rules, which determine the
scopes of bindings.

Then: deep and shallow binding rules, which (somewhat confusingly)
associate referencing environments with functions that are passed as
parameters or return values, or stored in variables.

Subroutine A

Direction of stack
growth (usually

lower addresses) Subroutine B

Subroutine C

Subroutine D

Temporaries

Local
variables

Miscellaneous
bookkeeping

Return address

Arguments
to called
routines

sp

fp

fp (when subroutine
 C is running)

Subroutine B

procedure C

 D; E

procedure B

 if ... then B else C

procedure A

 B

−− main program

 A

B

A

C

D

E

fp
C

D

B

E

A

MLS iPad

