
========================================
Sequencing

execute one statement after another
very straightforward; very imperative

----------------------------------------
Selection

sequential if statements
if ... then ... else

if ... then ... elsif ... else

(cond
(C1) (E1)
(C2) (E2)
...
(Cn) (En)
(T) (Et)

)

match e with
| pat1 when cond1 ->
| pat2 when cond2 ->
| ...
| patN when condN ->
| _ ->

value of explicit terminators or begin/end (or {}) brackets
need for elsif (elif)

jump code
When translating

if A < B then ... else ... fi
one might evaluate the condition to get a Boolean value in a register,

then branch depending on its value.
That's often more instructions than needed:

r1 := A
r2 := B
r1 := r1 < r2
if !r1 goto L1

<then clause>
goto L2

L1:
<else clause>

L2:
v.

r1 := A
r2 := B
if r1 >= r2 goto L1

<then clause>
goto L2

L1:
<else clause>

L2:

For expressions with short-circuiting, the difference is more
compelling (Example 6.49 in the text):

if ((A > B) and (C > D)) or (E <> F) then
then_clause

else
else_clause

w/out short-circuiting (as in, e.g., Pascal):

r1 := A -- load
r2 := B
r1 := r1 > r2
r2 := C
r3 := D
r2 := r2 > r3
r1 := r1 & r2
r2 := E
r3 := F
r2 := r2 <> r3
r1 := r1 | r2
if r1 = 0 goto L2

L1: <then clause> -- label not actually used
goto L3

L2: <else clause>
L3:

with short-circuiting (as in, e.g., C):

r1 := A
r2 := B
if r1 <= r2 goto L4
r1 := C
r2 := D
if r1 > r2 goto L1

L4: r1 := E
r2 := F
if r1 = r2 goto L2

L1: then_clause
goto L3

L2: else_clause
L3:

Note that this not only avoids performing unnecessary
comparisons; it also avoids the and and or instructions.

guarded commands
example of non-determinacy

if
cond1 -> stmt1

[] cond2 -> stmt2
...

[] condN -> stmtN
fi

similar version for loops

Fortran computed gotos

case/switch (introduced in Algol-W)
labels required to be disjoint

what should happen if there isn't a matching label for value?
Ada: forbid at compile time
C: no-op
Pascal: dynamic semantic error

case implementation
sequential testing

small number of choices, non-dense range
characteristic array (jump table)

dense range
hashing

non-dense range w/out range labels
binary search

large range, range labels
(probably don't need search tree, except perhaps if the key
distribution is highly nonuniform and we want better pivots than
we get with mean)

Should ranges be allowed in the label list?
they make it easy to state things for which a jump table or
hash table is awful: can be done efficiently (O(log n)) with
binary search

examples:
3: 1: 1: 1..48:
5: 2: 59: 97..283:
7: 3: 187: 900..1024:
9: ... ... ...

100: 1000000: 12345..67890:

MLS iPad

MLS iPad


