
==
Iterators

supply a for loop with the members of a set
abstraction/generalization of the “from A to B by C” sorts of

stuff you see built-in in older languages

pioneered by Clu:
for i in <iterator> do ... end
built-in iterators for from_to, from_to_by, etc.

wonderful for iterating over arbitrary user-defined sets
very good for abstraction; for loop doesn't have to know
whether set is a linked list, hash table, dense array, etc.

may be true iterators (as in Clu, C#, Icon, Python, Ruby)
or interface-based approximation ("iterator objects," as in
Euclid, Java, and C++)

in Python:

def uptoby(lo, hi, step):
while True:

if (step > 0 and lo > hi) \
or (step < 0 and lo < hi): return

yield lo
lo += step # ignore overflow

for i in uptoby(1, 20, 2):
print (i)

Iterator objects (Euclid, C++, Java)

Standard interface for abstraction to drive for loops.
Supported in Euclid and Java with special loop syntax, and
in C++ through clever use of standard constructor and
operator overload mechanisms.

In Java:

List<foo> myList = ...;

for (foo o : myList) {
// use object o

}

requires that the to-be-iterated class (here, List)
implements the Iterable interface, which exports a method

public Iterator<T> iterator()

where Iterator is an interface exporting methods

public boolean hasNext()
and

public T next()

The for loop is syntactic sugar for

for (Iterator<foo> i = myList.iterator(); i.hasNext();) {
foo o = i.next();
// use object o

}

C++ version looks like

list<foo> my_list;
...
for (list<foo>::const_iterator i = my_list.begin();

i != my_list.end(); i++) {
// make use of *i or i->field_name

}

Don't have to have an equivalent of the Iterator interface (it's
just a convention), because C++ individually type-checks every
use of a generic (template).

Note the different conceptual model:
Java has a special for loop syntax that uses methods of a

special class
C++ standard library defines iterators as "pointer-like" objects

with increment operations to drive ordinary for loops

All the standard library collection/container classes
support iterators, in both languages.

True iterators (Clu, Icon, C#, Python)

iterator itself looks like a procedure, except it can include
"yield" statements that produce intermediate values.

when the iterator returns, the loop terminates

C# for loop resembles that of Java:

foreach (foo o in myList) {
// use object o

}

This is syntactic sugar for

for (IEnumerator<foo> i =
myList.GetEnumerator(); i.MoveNext()) {

foo o = i.Current;
// use object o

}

Current is an accessor -- a special method supporting field-like
access:

public object Current {
get {

return ...;
}
put {

... = value;
}

}

In contrast to Java, you don't need to hand-create the hasNext()
[MoveNext()] and next() [Current] methods.The compiler does this
automatically when your class implements the IEnumerable interface
and has an iterator -- a method containing "yield return" statements
and "returning" an IEnumerator:

class List : IEnumerable {
...
public IEnumerator GetEnumerator() {

node n = head;
while (n != null) {

yield return n.content;
n = n.next;

} // NB: no return statement
}

}

If you want to be able to have multiple iteration orders, your class
can have multiple methods that each return an IEnumerator.
Then you can say, e.g.

foreach (object o in myTree.InPreOrder) { ...

foreach (object o in myTree.InPostOrder) { ...

detail:
IEnumerator implements MoveNext and Current (also Reset)
IEnumerable implements GetEnumerator, which returns an IEnumerator

Loop body as lambda (Smalltalk, Scheme, ML, Ruby, ...)

OCaml:
open Printf;;
let show n = printf "%d\n" n;;

let upto lo hi =
fun f -> let rec helper i =

if i > hi then ()
else (f i ; helper (i + 1)) in

helper lo;;

upto 1 10 show;; =>
1
2
3
4
5
6
7
8
9
10
- : unit = ()

Ruby:

sum = 0 => 0
[1, 2, 3].each { |i| sum += i } => [1, 2, 3] # array itself
sum => 6

Here the (parameterized) brace-enclosed block is passed to the each
method as a parameter.

There's also more conventional-looking syntax:

sum = 0
for i in [1, 2, 3] do # 'do' is optional

sum += i
end
sum

The for loop is syntactic sugar for a call to each.

Here's a more object-oriented alternative:

sum = 0
1.upto 3 {|i| sum += i}
sum

or instead of using braces:

sum = 0
i.upto 3 do |i| sum += i end
sum

You can write your own iterators using 'yield'.

class Array
def find

for i in 0...size
value = self[i]
return value if yield(value)

end
return nil

end
end
...
[1, 3, 5, 7, 9].find {|v| v*v > 30 } => 7

Think of yield as invoking the block that was juxtaposed
("associated") with the call to the iterator.

(FWIW, the array class already has a find method in Ruby, but we
can redefine it, and it probably looks like this anyway.)

Blocks can also be turned into first-class closures, with
unlimited extent:

def nTimes(aThing)
Ruby, like most scripting languages, is dynamically typed
return proc { |n| aThing * n }

end

In recent Ruby, -> is a synonym for proc

p1 = nTimes(3)
p2 = nTimes("foo")
p1.call(4) => 12
p2.call(4) => "foofoofoofoo"

This lets us build higher-level functions. Here's reduction
for arrays:

class Array
def reduce(n)

each { |value| n = yield n, value } # that's self.each
yield invokes (just once) the block associated
with the call to reduce. Note the lack of parens:
"yield (n, value)" would pass a single tuple.

n # return value
end
def sum

reduce(0) { |a, v| a + v }
end
def product

reduce(1) { |a, v| a * v }
end

end

[2, 4, 6].sum => 12
[2, 4, 6].product => 48

All in all Ruby is pretty cool. Check it out.
(I do wish it let you associate more than one block with a call.)

Implementation of true iterators (section 9.5.3-CS)

coroutines or threads
overkill

single-stack
used in Clu
works, but would confuse a standard debugger, and not compatible

with some conventions for argument passing

implicit iterator object
kinda cool; used in C# and Python

block as lambda expression (Ruby, functional languages)

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

