Iterators

supply a for loop with the members of a set
abstraction/generalization of the “from A to B by C”sorts of
stuff you see built-in in older languages

pioneered by Clu: /Eg‘ . :y‘ M:&bj ﬁ,lf?/ 2) g/D

for i in <iterator> do ... end
built-in iterators for from_to, from_to_by, etc.

wonderful for iterating over arbitrary user-defined sets
very good for abstraction; for loop doesn't have to know
whether set is a linked list, hash table, dense array, etc.

may be true iterators (as in Clu, C#, Icon, Python, Ruby)
or interface-based approximation ("iterator objects," as in
Euclid, Java, and C++)

Loe :m (\Wﬁ"é’/\fb S
G i “”’?(‘)@:
def uptoby(lo, hi, step): -

while True: M"
if (step > @ and lo > hi) \
or (step < @ and lo < hi): return
yield lo
lo += step # ignore overflow

in Python:

for i in uptoby(1, 20, 2):
print (i)

Iterator objects (Euclid, C++, Java)

Standard interface for abstraction to drive for loops.

Supported in Euclid and Java with special loop syntax, and
in C++ through clever use of standard constructor and
operator overload mechanisms.

In Java:

List<foo> myList = ...;

for (foo o : myList) {
// use object o

requires that the to-be-iterated class (here, List)
implements the Iterable interface, which exports a method

public Iterator<T> iterator()
where Iterator is an interface exporting methods

public boolean hasNext()
and
public T next()

The for loop is syntactic sugar for

for (Iterator<foo> i = myList.iterator(); i.hasNext();) {
foo o = i.next();
// use object o

C++ version looks like
list<foo> my_list;

for (list<foo>::const_iterator i = my_list.begin();
i !'= my_list.end(); i++) {
// make use of xi or i->field_name

}

Don't have to have an equivalent of the Iterator interface (it's

just a convention), because C++ individually type-checks every
use of a generic (template).

Note the different conceptual model:
Java has a special for loop syntax that uses methods of a
special class
C++ standard library defines iterators as "pointer-like" objects
with increment operations to drive ordinary for loops

All the standard library collection/container classes
support iterators, in both languages.

True iterators (Clu, Icon, C#, Python)

iterator itself looks like a procedure, except it can include
"yield" statements that produce intermediate values.
when the iterator returns, the loop terminates

C# for loop resembles that of Java:
foreach (foo o in myList) {
// use object o
This is syntactic sugar for
for (IEnumerator<foo> i =
myList.GetEnumerator(); i.MoveNext()) {
foo o = i.Current;
// use object o

}

Current is an accessor -- a special method supporting field-like
access:

public object Current {

get {
return ...;
}
put {
. = value;
}

}

In contrast to Java, you don't need to hand-create the hasNext ()
[MoveNext ()] and next() [Current] methods.The compiler does this
automatically when your class implements the IEnumerable interface
and has an iterator -- a method containing "yield return" statements
and "returning" an IEnumerator:

class List : IEnumerable {

public IEnumerator GetEnumerator() {
node n = head;
while (n != null) {
yield return n.content;
n = n.next;

} // NB:no return statement

If you want to be able to have multiple iteration orders, your class
can have multiple methods that each return an IEnumerator.
Then you can say, e.g.

foreach (object o in myTree.InPreOrder) { ...
foreach (object o in myTree.InPostOrder) { ...

detail:

IEnumerator implements MoveNext and Current (also Reset)
IEnumerable implements GetEnumerator, which returns an IEnumerator

Loop body as lambda (Smalltalk, Scheme, ML, Ruby, ...)

OCaml:

open Printf;;
let show n = printf "%d\n" n;;

let upto lo hi =
fun f —> let rec helper i =
if i > hi then ()
else (f i ; helper (i + 1)) in
helper lo;;

upto 1 10 show;; =
1
2
3
4
5
6
7
8
9
10
- 1 unit = ()
Ruby:
sum = @ = 0
[1, 2, 3 l.each { |i] sum += i } => [1, 2, 3] # arrayitself
sum = 6

Here the (parameterized) brace-enclosed block is passed to the each
method as a parameter.

There's also more conventional-looking syntax:

sum = @

for i in [1, 2, 3] do # 'do' is optional
sum += i

end

sum

The for loop is syntactic sugar for a call to each.
Here's a more object-oriented alternative:

sum = @
l.upto 3 {|i| sum += i}
sum

or instead of using braces:

sum = @
i.upto 3 do |i| sum += i end
sum

You can write your own iterators using 'yield'.

class Array
def find
for i in 0@...size
value = self[il
return value if yield(value)
end
return nil
end
end

[1, 3, 5, 7, 9].find {|v| vkv > 30 } =7

Think of yield as invoking the block that was juxtaposed
("associated") with the call to the iterator.

(FWIW, the array class already has a find method in Ruby, but we
can redefine it, and it probably looks like this anyway.)

Blocks can also be turned into first-class closures, with
unlimited extent:

def nTimes(aThing)
Ruby, like most scripting languages, is dynamically typed
return proc { |n| aThing * n }

end

In recent Ruby, —> is a synonym for proc

pl = nTimes(3)

p2 = nTimes("foo")

pl.call(4) = 12

p2.call(4) => "foofoofoofoo"

This lets us build higher-level functions. Here's reduction
for arrays:

class Array
def reduce(n)
each { |value| n = yield n, value } # that's self.each
yield invokes (just once) the block associated
with the call to reduce. Note the lack of parens:
"yield (n, value)" would pass a single tuple.
n # returnvalue
end
def sum
reduce(@) { |a, v|] a +v }
end
def product
reduce(1) { |a, v| a *x v }

end
end

[2, 4, 6].sum = 12
[2, 4, 6].product => 48

All in all Ruby is pretty cool. Check it out.
(I do wish it let you associate more than one block with a call.)

Implementation of true iterators (section 9.5.3-CS)

coroutines or threads
overkill

single-stack
used in Clu
works, but would confuse a standard debugger, and not compatible
with some conventions for argument passing

implicit iterator object
kinda cool; used in C# and Python

block as lambda expression (Ruby, functional languages)

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

