
==
Recursion

equally powerful to iteration, and as efficient in cases where you
can use tail recursion.

mechanical transformations back and forth
often more intuitive (sometimes less)
naive implementation less efficient
no special syntax required
fundamental to functional languages like Scheme

tail recursion

(* OCaml: *)
let rec gcd b c =

if b = c then b
else if b < c then gcd b (c - b)
else gcd (b - c) c;;

implemented as

gcd (b c)
start:

if b = c
return b

if b < c
c := c - b
goto start

if b > c
b := b - c
goto start

changes to create tail recursion (e.g. pass along an accumulator)

(* OCaml: *)
let rec summation f low high =

if low == high then f low
else f low + summation f (low+1) high;;

becomes

let rec summation2 f low high st =
if low == high then st + f low
else summation2 f (low+1) high (st + f low);;

and then

let summation3 f low high =
let rec helper low st =
let new_st = st + f low in
if low == high then new_st
else helper (low+1) new_st in

helper low 0;;

More generally (absent an associative operator), pass along a
continuation.

This is perfectly natural to someone used to programming in a
functional language. Note that the summation example depends for
correctness on the associativity of addition. To sum the elements
in the same order we could have counted down from high instead of
up from low, but that makes a more drastic change to the structure
of the recursive calls.

There is no perfectly general algorithm to discover tail-recursive
versions of functions, but compilers for functional languages
recognize all sorts of common cases.

Sisal and pH have "iterative" syntax for tail recursion:

function sum (f : function (n : integer returns integer),
low : integer, high : integer returns integer)

for initial
st := f (low);

while low <= high
low := old low + 1
st := old st + f (low)

returns value of st
end for
end function

The Sisal compiler was really good at finding tail recursive forms.

Concurrency
specifies that statements are to occur (at least logically) concurrently
concurrency is fundamental to probably half the research in computer

science today
subject of chapter 13

Nondeterminacy
choice "doesn't matter"
periodically popular, promoted by Dijkstra for use with selection

(guarded command syntax)
can apply to execution order as well
useful for certain kinds of concurrency

process server
do

receive read request ->
reply with data

[]
receive write request ->
update data and reply

od

also nice for certain axiomatic proof schemes
raises issues of "randomness", "fairness", "liveness", etc.

