Notes for CSC 2/454, 26 and 28 Oct. 2020

Type Systems
We have all developed an intuitive notion of what types are.

What's behind the intuition -- what is a type?

- collection of values from a "domain"
(the mathematical/denotational approach)

- equivalence class of objects (the implementor's approach)

- internal structure of a bunch of data, described down to the level
of a small set of fundamental types (the structural approach)

- collection of well-defined operations that can be applied to objects
of that type (the abstraction approach)

What are types good for?
implicit context (resolution of polymorphism and overloading)
checking -- make sure that certain meaningless operations do not
occur. Type checking cannot prevent all meaningless operations,
but it catches enough of them to be useful.

Strong typing means, informally, that the language prevents you from
applying an operation to data on which it is not appropriate.

Static typing means that the compiler can do all the checking at
compile time. Lisp dialects are strongly typed, but not statically
typed. Ada is statically typed. ML dialects are statically typed with
inference. Cis statically but not strongly typed.  Java is strongly
typed, with a non-trivial mix of things that can be checked statically
and things that have to be checked dynamically.

With the proliferation of scripting languages, static v. dynamic typing

has become a controversial topic. The dynamic camp argues that static
type declarations add too much noise and confusion to programs, making
it harder to express what you want quickly. The static camp argues that
you ought to catch as much as you can ahead of time.

A type system has rules for

- type equivalence (when are the types of two values the same? --
that is, what exactly arethe types in the program?)

- type compatibility (when can a value of type A be used in a
context that expects type B?) Note that this is directional. One
might, for example, be allowed to use an integer everywhere a
real is expected, but not vice versa.

- type inference (what is the type of an expression, given the types of
the operands [and maybe the surrounding context]?)

Type compatibility / type equivalence

Compatibility is the more useful concept, because it tells you what you can do.
The terms are often (incorrectly, but | do it too) used interchangeably.

Most languages say type A is compatible with (can be used in a context that
expects) type B if it is equivalent or if it can be coerced to it.

Two major approaches to equivalence: structural equivalence and name
equivalence. Name equivalence is based on declarations. Structural
equivalence is based on some notion of meaning behind those declarations.
Name equivalence is more fashionable these days, but not universal.

Structural equivalence depends on recursive comparison of type descriptions
Substitute out all names; expand all the way to built-in types.
Original types are equivalent if the expanded type descriptions
are the same.

(Pointers complicate matters, but the Algol folks figured out how to
handle it in the late 1960's. The correct approach is to apply a

"set of subsets" algorithm to the graph of types that point to each
other, the same way one turns a non-deterministic FSM into an
equivalent deterministic FSM.)

Name equivalence depends on actual occurrences of declarations in the
source code.

Example:

struct person {
string name;
string address;

struct school {
string name;
string address;

These are structurally equivalent but not name equivalent. Depending on

your language, the following might also be structurally equivalent to
the above:

struct part {
string manufacturer;
string description;

Depending on your language, the following might or might not be name equivalent:

type fahrenheit = integer;
type celsius = integer;

We probably don't want those to be, but maybe integer and score should
be equivalent -- the word "score" might just be for documentation purposes.

This is strict v. loose name equivalence. Ada lets you choose:

type score is integer;

type fahrenheit is new integer;
type celsius is new integer;

Algol-68 used structural equivalence, as did many early Pascal
implementations (the ISO standard uses name equivalence). Java uses
name equivalence. ML-family languages are more-or-less structural (see
below). C uses a hybrid (structural except, ironically, for structs).

Both forms of type equivalence have nontrivial implementation issues for
separate compilation.
timestamp header files?
checksum header files?
avoid comments, format?
how handle compatible upgrades?
finer grain?
"name mangling" -- enforce with standard linker

Coercion
When an expression of one type is used in a context where a different
type is expected, one normally gets a type error. But what about

var a : integer; b, c : real;
c:=a+b;

Many languages allow things like this, and coerce an expression to be
of the proper type. Coercion can be based just on types of operands,
or can take into account expected type from surrounding context as well.

Fortran and C have lots of coercion, all based on operand type.
Here's an abbreviated version of the C rules:
if either operand is long double, the other is converted if
necessary, and the result is long double
else similarly if either is double
else similarly if either is float
else both are integral:
if they're the same, the result matches
else if both are signed or both unsigned, the one with lower
"rank" is converted to the one with higher rank, and the
result matches
else one is signed and the other is unsigned:
if the unsigned has greater or equal rank, the signed
one is converted and the result has the unsigned type
else if the signed type can hold all possible values of
the unsigned type, the unsigned one is converted and
the result has the signed type
else both are converted to the unsigned type corresponding
to the signed type, and that's also the type of the result
if necessary, precision is removed when assigning into LHS

In effect, coercion is a relaxation of type checking.
Some languages (e.g. Modula-2 and Ada) forbid it.

C++, by contrast, goes hog-wild with coercion.
It's one of several parts of the language that many programmers find
difficult to understand.

Make sure you understand the difference between
type conversions (explicit)
type coercions (implicit)
non-converting type casts (breaking the typing rules)

Sometimes the word 'cast' is used for conversions,
which is unfortunate. Cis guilty here.

Some authors also vary the meanings of "conversion" and "coercion” --
e.g., to distinguish between cases that do or do not entail run-time
code. | think that's a bad idea: | use the terms to indicate

semantics; implementation is orthogonal.

Type inference and polymorphism
simple case: local-only. Esp. useful for declarations.

var pi = 3.14; // C#
auto pi = 3.14; // C++11
or
auto o = new very_long_type_name<X, Y, Z>(args);

similarly
var/val/def inScala
var/let in Swift
var/:= in Go

complicated case: ML (OCaml), Miranda, Haskell

-— fib :: int —> int
let fib n =
let rec helper f1 f2 i =
if i = n then f2
else helper f2 (f1 + f2) (i + 1) in
helper 0 1 0;;

Ol WNE,

iis int, because it is added to 1 at line 5

nis int, because it is compared to i at line 4

all three args at line 6 are int consts, and that's the only use of
helper (given scope of let), so f1 and f2 are int

also, the 3rd argument is consistent with the known int type of i (good!)

and the types of the arguments to the recursive call at line 5 are
similarly consistent

since helper returns f2 (known to be int) at line 4, the result of
the call at line 6 will be int

Since fib immediately returns this result as its own result,
the return type of fibis int

(Note that the limited scope of the let construct allows the compiler to use
the types of helper's actual parameters to deduce helper's own types --
something it can't do at the global level.)

fib itself is of type int —> int
helperis of type int —> int -> int —> int

Polymorphism results when the compiler finds it doesn't need to know certain
things. For example:

let compare x p q =
if x = p then if x = q then "both" else "first"
else if x = g then "second" else "neither";;
(*x NB: I've used structural equality comparison here,
not physical identity *)

compare hastype 'a —> 'a -> 'a —> string
'ais a type variable, so compare is polymorphic.

Any time the ML or Haskell compiler determines that A and B have to have
the same type, it tries to unify them. For example, in the expression

if x then el else e2

x has to be of type boo1l, and el and e2 have to be of the same type.

If el is (so far) known to be of type 'a * int (a 2-element tuple)

and e2 is known (so far) to be of type char list * ‘b, then 'ais char list
and 'bis int, and the expression as a whole is of type char list * int.

Like Lisp, ML-family languages make heavy use of lists, but ML's lists
are homogeneous -- all elements have to have the same type. Ex:

let append 11 12 =
match 11 with
[1 - 12
h::t —> h :: append t 12;;

: 1 is a constructor -- used for piecing together values of composite
types (like cons in Lisp).

There are many other such polymorphic functions.

Note that hd and tlin ML (like car and cdr in Lisp) are bad style; you
should almost always use match, as in the example above.

Unification, by the way, is a powerful technique, used for a variety of
purposes in programming languages. It's the basis of computation in
Prolog, which tries to unify RHS's of rules with LHS's of things that
might imply them.

In Prolog, unification assigns values to variables

In ML, it assigns types to type variables

Unification is also used to type-check C++ templates.

Advanced Topics

Types can be the subject of a whole class on their own.
A certain amount of advanced material gets covered in 255.

Here are a couple examples.
Type classes and Higher-level types (kinds)

Type classes are sort of like interfaces in an object-oriented language,
but built into the compiler.

In Haskell, for example, a type that supports equality and

inequality operators (== and /=) is of class Eq.

A type that supports <, >, <=, and >= is of class Ord.

0rd is a subclass of Eq: you can use an 0rd type anywhere an Eq type
is expected.

Like OCaml, Haskell provides ML-family type inference. But where
OCaml defines ordering operations on every type for simplicity,
Haskell infers that any values to which you apply < or > operators
must be of a type in class Ord.

You can define your own type classes.

There is also a notion of type kinds, which impose structure on
type constructors like tuples, records, variants, and functions.

Typestate

A few languages capture, in the compiler, the notion that objects of
a class can be in any of several states, that certain methods

apply only when the object is in a certain state, and the certain
methods transform the object from one state to another. This
allows certain kinds of errors to be caught by the compiler.

An object of type file, for example, might only support read and
write operations after it has been opened. A typestate compiler
might catch "file has not been opened" errors at compile time.

You can think of definite assignment in Java and C# as a very
limited form of typestate.

Lifetime analysis

Rust incorporates the notion of lifetime into types, to avoid
dangling references and storage leaks without run-time garbage
collection.

By default, a dynamically allocated mutable (non-constant) object in
Rust can be accessed through only one variable at a time. When
desired, the programmer can create multiple read-only references to
avariable. The compiler can always tell when the last reference to
a variable goes away, and can generate code to reclaim its space.

The rules are complicated, however, and have not yet been
successfully formalized. Moreover many standard container classes
have to break the rules in order to produce code that is both fast
and fully functional. One has to trust that this "unsafe" code is
correct -- or perhaps some day prove it.



