
==
Polymorphism and Generics

Recall from chapter 3:

ad hoc polymorphism: fancy name for overloading

subtype polymorphism in OO languages allows code to do the "right
thing" when a ref of parent type refers to an object of child type

implemented with vtables (to be discussed in chapter 9)

parametric polymorphism
type is a parameter of the code, implicitly or explicitly

implicit (true)

language implementation figures out what code requires of object
at compile-time, as in ML or Haskell
at run-time, as in Lisp, Smalltalk, or Python

lets you apply operation to object only if object has
everything the code requires

explicit (generics)
programmer specifies the type parameters explcitly
mostly what I want to talk about today

--
Generics found in Clu, Ada, Modula-3, C++, Eiffel, Java 5, C# 2.0, ...

C++ calls its generics templates.
Allow you, for example, to create a single stack abstraction, and instantiate
it for stacks of integers, stacks of strings, stacks of employee records, ...

template <class T>
class stack {

T[100] contents;
int tos = 0; // first unused location

public:
T pop();
void push(T);
...

}
...
stack<double> S;

I could, of course, do

class stack {
void*[100] contents;
int tos = 0;

public:
void* pop();
void push(void *);
...

}

But then I have to use type casts all over the place. Inconvenient and,
in C++, unsafe.

Lots of containers (stacks, queues, sets, strings, mappings, ...)
in the C++ standard library.

Similarly rich libraries exist for Java and C#.
(Also for Python and Ruby, but those use implicit parametric
polymorphism with run-time checking.)

--
Some languages (e.g. Ada and C++) allow things other than types to be
passed as template arguments:

template <class T, int N>
class stack {

T[N] contents;
int tos = 0;

public:
T pop();
void push(T);
...

}
...
stack<double, 100> S;

--
Implementation

C# generics do run-time instantiation (reification). When you say
stack<foo>, the run-time system invokes the JIT compiler and generates
the appropriate code. Doesn't box native types if it doesn't need to --
more efficient.

Java doesn't do run-time instantiation. Internally everything is
stack<Object>. You avoid the casts in the source code, but you have to
pay for boxing of native types. And since the designers were unwilling
(for backward compatibility reasons) to modify the VM, you're stuck with
the casts in the generated code (automatically inserted by the
compiler) -- even though the compiler knows they're going to succeed --
because the JVM won't accept the byte code otherwise: it will think it's
unsafe. Also, because everything is an Object internally, reflection
doesn't work.

The Java implementation strategy is known as erasure -- the type
parameters are simply erased by the compiler. One more disadvantage: you
can't say new T(), where T is generic parameter, because Java doesn't
know what to create.

C++ does compile-time instantiation; more below.
C# may do compile-time instantiation when it can, as an optimization.

--
Constraints

The problem:

If I'm writing a sorting routine, how do I insist that the elements
in the to-be-sorted list support a less_than() method or < operator?

If I'm writing a hash table, how do I insist that the keys support a
hash() method?

If I'm writing output formatting code, how do I insist that objects
support a to_string() method?

Related question:

Do I (can I) type-check the generic code, independent of any
particular instantiation, or do I type-check the instantiations
independently?

Tradeoffs are nicely illustrated by comparing Java, C#, and C++.

C++ is very flexible: every instantiation is independently
type-checked. Constraints are implicit: if we try to instantiate a
template for a type that doesn't support needed operations, the instance
won't type-check. This has led, historically, to really messy error messages.

Most other languages type-check the generic itself, so you don't get any
instantiation-specific error messages. To support this, they require
that the operations supported by generic parameter types be explicitly
listed. Java and C# leverage interfaces for this purpose.
C++20 adds concepts, which provide an (optional, for backward
compatibility) superset of the functionality found in Java and C#.

Java example:

public static <T implements Comparable<T>> void sort(T A[]) {
...
if (A[i].compareTo(A[j]) >= 0) ...
...

}
...
Integer[] myArray = new Integer[50];
...
sort(myArray);

Note that Java puts the type parameters right in front of the return
type of the function, rather than in a preceding "template" clause.
Comparable is a standard library interface that includes the
compareTo() method. Wrapper class Integer implements
Comparable<Integer>.

C# syntax is similar:

static void sort<T>(T[] A) where T : IComparable {
...
if (A[i].compareTo(A[j]) >= 0) ...
...

}
...
int[] myArray = new int[50];
...
sort(myArray);

C# puts the type parameter between the function name and the parameter
list and the constraints after the parameter list. Java won't let you
use int as a generic parameter, but C# is happy to; it creates a custom
version of sort for ints.

(pre-20) C++ doesn't require that constraints be explicit.

template <class T>
void sort(T A[], int A_size) {...

(C++ can't figure out the size of an array, so you have to pass it in.
Alternatively you could make it another generic parameter.)

As noted in the book, bad things happen if a parameter "accidentally"
supports a needed operation, in the "wrong way". If we instantiate sort
on an array of C strings (char* s), for example, we get sorting by location
in memory, not lexicographic order (C++ string objects compare
lexicographically).

Constraints have historically been specified explicitly in C++ only by
convention:

make a function parameter inherit from a standard base class
e.g., sort<foo>(SortableVector<foo> A), where SortableVector<T>

inherits from both Vector<T> and Comparator<T>
provide required operations as generic parameters

e.g. sort<foo, comparator<foo>>(foo* A, int len)
provide required operations as ordinary parameters

e.g. sort<foo>(foo* A, int len, bool (*less_than<foo>)())
make sort the operator() of a class for which less_than() is a

constructor argument
e.g. sort = new Sorter(bool (*less_than<foo>)()),
where Sorter has an operator()

Concepts change this:

template <typename T>
concept Comparable = requires(T a, T b) { a < b; };

template <Comparable T>
void sort(T A[], int A_size) {...

--
Implicit Instantiation

Several languages, including C++, Java, and C#, will instantiate generic
functions (not classes) as you need them, using roughly the same
resolution mechanism used for overloading. (Actually, in C++ it
requires unification, because of the generality of generic parameters,
including nested templates and specialization.)

--
Interaction with Subtype Polymorphism

These two play nicely together. If I derive queue from list I want
subclasses. But I may also want generics: derive queue<T> from list<T>.

The subtle part is conformance of argument and return types.
Suppose I want to be able to sort things in Java that don't implement
Comparable themselves. I could make the comparator be a constructor
argument instead of a generic argument (the 4th by-convention option in
C++ above):

interface Comparator<T> {
public Boolean ordered(T a, T b);

}

class Sorter<T> {
Comparator<T> comp;

public Sorter(Comparator<T> c) { // constructor
comp = c;

}

public void sort(T A[]) {
...
if (comp.ordered(A[i], A[j])) ...
...

}
}

class IntComp implements Comparator<Integer> {
public Boolean ordered(Integer a, Integer b) {

return a < b;
}

}

Sorter<Integer> s = new Sorter<Integer>(new IntComp());
s.sort(myArray);

This works fine, but it breaks if I try

class ObjComp implements Comparator<Object> {
public Boolean ordered(Object a, Object b) {

return a.toString().compareTo(b.toString()) < 0;
}

}

Sorter<Integer> s = new Sorter<Integer>(new ObjComp());
s.sort(myArray);

The call to new causes the compiler to generate a type clash message,
because we're passing a Comparator<Object> rather than a
Comparator<Integer>. This is fixed in Java using type wildcards:

class Sorter<T> {
Comparator<? super T> comp;

public Sorter(Comparator<? super T> c) {
comp = c;

}

In general, you use <? super T> when you expect to pass objects into a
method that might be willing to take something more general (and you
never expect to accept such objects in return).

There's also <? extends T> syntax, for when you expect something back
out of a context that might in fact give you something more specific
(and you never expect to pass such objects in).

In effect, these super and extends keywords serve to control type
compatibility for generics. Given a generic Foo<T>, we must ask: if C
is derived from P (and thus C can be used in any context that expects a P),
can Foo<C> be used in any context that expects Foo<P>?
If so, we say Foo<T> is covariant in T.

Typically happens in the case where T objects are returned
from Foo methods, but never passed into them as parameters.

For example, I can probably pass a Generator<C> object to anybody
who expects a Generator<P> object:

- They expect to use the generator to conjure up P objects.
- If the generator gives them a C instead, they're happy.

Conversely (and more commonly), there are times when a Foo<P> object
can be used in a context that expects Foo<C>.
When this happens, we say Foo<T> is contravariant in T.

Typically happens when T objects are passed to Foo methods,
but never returned from them.

For example, I can probably pass a Printer<P> object to anybody
who expects a Printer<C>.

- They're only going to give it C objects.
- Since the printer is willing to take a P object, it's happy.

C# makes covariance and contravariance a property of the generic itself.
You specify <in T> and <out T> in the declaration of the generic to
indicate contravariance and covariance, respectively. This restricts
what can be done with T inside the generic.

Java gives you more flexibility (and arguably more confusion) by allowing you
to annotate uses of the generic -- in effect saying "I promise (and the compiler
should verify) that I never call methods that pass objects the wrong way).

If you're always going to pass objects in, you're using contravariance,
and you say <? super T>

If you're always going to accept objects as return values, you're using
covariance, and you say <? extends T>.

covariance:
C is a P --> Foo<C> is a Foo<P> C# out Java extends

contravariance:
C is a P --> Foo<P> is a Foo<C> C# in Java super

invariance:
C is a P but Foo<C> and Foo<P> are incomparable

More on this on the PLP companion, section 7.3.2.
The Wikipedia page on covariance & contravariance has even more detail.

