Notes for CSC 2/454, Nov. 11 & 16, 2020

A smorgasbord of types

scalar types -- one or two-dimensional
discrete -- one-dimensional and countable
integer
boolean
char
enumeration
subrange
rational
real
complex

composite types
records/structs/tuples
variants/unions
arrays
strings
sets
pointers
lists
files

mappings // common in scripting languages

Records
usually laid out contiguously
possible holes for alignment reasons
permits copying but not comparison with simple block operations

example:

struct element {
char name[2];
int atomic_number;
double atomic_weight;
bool metallic;

}

layout on a 32-bit machine:
‘ ~——— 4bytes/32bits —— ‘

name
atomic_number

atomic_weight

metallic

A few languages allow the programmer to specify that a record is packed,
meaning there are no (internal) holds, but fields may be unaligned.
less space, but significant run-time access penalty

| 4bytes/32bits |

name atomic_

atomic_weight

metallic

Smart compilers may re-arrange fields to minimize holes
largest first or smallest first
latter maximizes # of fields with a small offset from the beginning

4 bytes/32bits ——————— ‘

name metallic -

atomic_number

atomic_weight

C compilers promise not to rearrange

Unions (variant records)

overlay space
w/ tag: discriminated union
w/out tag: nondiscriminated union

cause problems for type checking -- you don't know what is there
ability to change tag and then access fields hardly any better

- can make fields "uninitialized" when tag is changed (this

generally requires extensive run-time support)
- can require assignment of entire variant (w/ tag), as in Ada or OCaml

Several languages (including Algol68, Ada, and ML) require access to
variant portions of a record to be confined to a "conformity clause"
(e.g., OCaml's match) that ensures type safety.

If structs and unions are independent, declarations can be quite ugly,
as in this legacy C:

struct employee {
union {
struct { // hourly employee
double hourly_pay;

} s1;
struct { // salaried employee
double annual_salary;

}s2i
} u1;
b

this_employee.U1.S1.hourly_pay // yuk!
Pascal unified records and variants:
type employee = record

case boolean of (* hourly? x)
true:
hourly_pay : real;
false:
annual_salary: real;
end;

this_employee.hourly_pay // better

Recent versions of C and C++ achieve a similar effect with anonymous
structs and unions. Strike out the S1, S2, U1 names above.

Note that the problem of uninitialized variables is more general than
variant records. Some languages say variables start out with certain
values (e.g. 0 for globals [but not locals!] in C). Many just say it's
erroneous to use an uninitialized variable. A few actually try to
prevent you from accessing one. In general, the only ways to do this
are (1) restrict the language, e.g., as Java and C# do to ensure
definite assignment; (2) initialize variables automatically with a
special "uninitialized" value and check most references at run time.

