Pointers and recursive types

pointers serve two purposes:
efficient (and sometimes intuitive) access to elaborated objects (as in C)
dynamic creation of linked data structures, in conjunction with
a heap storage manager

Note that pointers are not the same thing as addresses. Pointers are
an abstraction. Addresses are an implementation. Pointers are not always
implemented as addresses:

- machines with segments

- error checks (e.g. locks and keys -- see below)

- swizzling

- cursors

- C++ overloading of *, —> (e.g., for smart pointers)

Many languages restrict pointers to accessing things in the heap: the

only way to get a pointer is by calling new. Others (e.g., C) allow
you to create a pointer to any existing object.

Pointers are used with a value model of variables.
They aren't needed with a reference model.

Good implementations of languages with a reference model of variables
represent primitive (immutable) types the same way you would for a
language with a value model of variables -- you think of your variable

x as a reference to "the" 3 (the Platonic ideal), but the compiler
implements it as a box with a copy of "the" 3 in it.

y 1= X

mental model: implementation:
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Problems:
syntax of pointer dereferencing
typically explicit, as in C
a few languages dereference automatically, depending on context
Ada, for example, does implicit dereferencing for record
field references, and has special syntax to name the
entire referenced object

type foo is record ...
type fp is access foo

f : xp := new foo;
y := f.fieldl; -- implicit dereference
g : foo := f.all; --whole object

dangling pointers
due to
explicit deallocation of heap objects
only in languages that have explicit deallocation
implicit deallocation of elaborated objects
only in languages that let you create pointers to these
two implementation mechanisms to catch dangling pointers:

lock-and-key

new (my_ptr) ;

my_ptr | 135942

135942

—

ptr2 := my_ptr;

my_ptr | 135942 135942
]
ptr2 | 135942

J—

delete(my_ptr);

my_ptr | 135942 0
(Potentially
reused)

ptr2 | 135942

—

not an option for pointers to elaborated objects

tombstones

new(my_ptr) ;

ptr2 := my_ptr;

my_ptr

ptr2

delete(my_ptr);

w7 |
(Potentially
reused)

tombstones themselves live a long time, but can be
garbage collected using reference counts; more later

Garbage collection

Many languages leave it up to the programmer to design without
garbage creation. This is very hard.

C++ increasingly regularizing automatic collection via smart
pointers. Rust supports manual reclamation via ownership
and borrowing, but this significantly complicates the creation
of linked structures.

Increasingly, languages arrange for automatic garbage collection
objects are reclaimed when the runtime can prove they are no
longer accessible. (Note: this is not the same as no longer
needed -- may be overly conservative.)

Two common implementations: reference counting and tracing

reference counting
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works great for strings
does not work for circular structures

0o |

Stack Heap

stooges | 2 |”larry"| <|—>| 1 | "moe" |
[ T
stooges := nil;

stooges | /l | 1 |“1arry“| 4|—>| 1 | "moe" |

does work for tombstones, though you have to make sure that when
you delete a struct containing pointers (or allow it to go out
of scope) the compiler decrements the reference counts of the
tombstones for those pointers. Key observation is that
tombstones are used with explicit object deletion: ref. counts
fail to reclaim tombstone only when user fails to reclaim object.

tracing
generally requires strong typing
(but see conservative collection below)
used routinely in Java, C#, Scala, Swift, Kotlin, Go,
Lisp, ML/OCaml/Haskell, scripting languages, ...
variants

mark-and-sweep
takes time proportional to total heap size

(would prefer proportional to amount of garbage collected,
ut we don't know how to do that)
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can use pointer reversal for space-efficient tracing

stop-and-copy
takes time proportional to amount of space currently in use
performs compactieq, to cure external fragmentation

might be expected to double space requirements, but
doesn’t really, given virtual memory

generational (used in most production systems)

avoids, heuristically, wasting time on memory that
Y, wastine Y old-So -neay

is unlikely to be unused
has to be able to fall back to previous techniques
requires "write barriers" in program code to track
old-to-new pointers
(we also need write barriers -- for different reasons --

U with reference counts)

Conservative approximation possible in almost any language:

Assume any pointer-sized aligned value is a pointer if its bit
pattern is the address of (the beginning of) a block in the heap.

Limitations:
pointers to interior of objects not generally supported
pointers must not be hidden (stored in any way other
than a full-word aligned address)
can leak storage when the address of an unneeded block
happens to match the bit pattern of some non-pointer
object.

hybrids also possible: e.g., reference count most of the time,

do a mark-and-sweep once in a while to catch circular
structures.

C pointers and arrays

The basic idea: an array variable is (in most respects) treated
like a pointer to the array's first element; subscripting is defined
in terms of pointer arithmetic:

E1[E2] == (x((E1)+(E2))) = (x((E2)+(E1))) !
So given
int n, xp;
You can say not only
n = pl3l;
but also
n = 3[pl; // surprise!

Subscripting scales to the size of array elements in C precisely
because pointer arithmetic does.

When is an array not a pointer?
(a) in a variable definition, where the array allocates space
(b) in a sizeof, where the array represents the whole thing

double A[10];
double *p = A;

sizeof(A) == 80 // the whole array
sizeof(A[0]) == // one element
sizeof(p) == 4 // a pointer (on a 32-bit machine)

Variable definitions:
int xa[n] // n-element array of row pointers
int aln][m] // 2-D array

Beware the difference between definitions, which allocate space,
and declarations, which merely introduce names.

Since function prototypes (headers) are just declarations, and
don't allocate space, and since arrays are passed as pointers,
the following parameter declarations are equivalent:

int *a == int all // pointer to int
int #xa == int *a[l // pointer to pointer to int

Note that these equivalences do not hold for definitions.

Compiler has to be able to tell the size of the things to which

you point. So the following aren't valid, even as parameter
declarations:

int alll] // bad
int (xa)[] // bad

But a[] [10] is ok, even as a parameter, and the compiler will do the
right thing. (xa) [10] is equivalent as a parameter.

You can pass contiguous arrays to subroutines, but you have to
specify the size of all inner dimensions:

int all[10] // ok (as declaration, not definition)
int (xa)[10] //"; does the same thing
int al[10][10] //also ok, but first 10 is unnecessary

C declaration rule: read right as far as you can (subject to
parentheses), then left, then out a level and repeat.

int *aln] // n-element array of pointers to integers
int (xa)[n] // pointer to n-element array of integers

int (xf)(int %) // pointer to function taking pointer to
// integer as argument, and returning integer

Choice between pointer arithmetic & subscripts is largely a matter of
taste. Pointer arithmetic used to be faster with stupid compilers.
With modern compilers it's often the other way around, particularly
given the tendency of aliases to inhibit optimization.

Cf. choice between row-pointer and contiguous layout: tradeoff has
reversed with time.
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