Notes for CSC 2/454, Nov. 18 and 23, 2020

Stack management
Recall allocation strategies: static, stack, heap

Maintaining the Run-Time stack
Contents of a stack frame

bookkeeping: return PC (dynamic link), saved registers,
static link, (rarely) alignment or interrupt mask information

arguments and return value(s)

local variables

temporaries

aintenance of stack is responsibility of "calling sequence"
and subroutine "prologue" and "epilogue".

space is saved by doing as much work as possible
in the prologue and epilogue

time may be saved by doing work in the caller instead, where more
information may be known. E.g., there may be fewer registers
in use at the point of call than are used somewhere in the callee.

common strategy is to divide registers into "caller-saves" and
"callee-saves" sets.
Caller uses the "callee-saves" registers first;

"caller-saves" registers if necessary.
Callee uses the "caller-saves" registers first;
"callee-saves" registers if necessary.

Local variables, parameters, and temporaries are assigned fixed
offsets from the frame pointer or stack pointer at compile time

Variable-length locals and parameters are handled with descriptors
(dope vectors). The descriptors are at known offsets. For locals,
they are accompanied by a pointer to space higher up in the frame.
For value arguments, the pointer points down in the frame.

Stack layout varies significantly from machine to machine and, to some
degree, from compiler to compiler.

Many compilers access everything relative to the stack pointer when
they can, so the frame pointer can be used for something else. This
is not possible w/ variable-sized data in the frame.

Typical modern compiler aims to minimize memory accesses and to rely on
simple instructions:

- no special instructions other than jsr or call

- most arguments passed through registers

(but space reserved on stack)

- often skip frame pointer

- relatively stable sp (arg build area)

- simple leaf routines make no use of memory at all

Older compilers often used the stack more, and leveraged complex,
special-purpose instructions:
- special subroutine-calling instructions to save and update the frame
pointer, save registers, branch, and allocate space for the frame
all in one or two instructions.
- special push and pop operations to load/store and update sp in one
instruction
- (usually) all arguments passed on the stack
- (usually) real frame pointer
- (usually) sp moves up and down as arguments are pushed and popped.
Convenient for function calls embedded in argument lists.
No longer done this way on x86, however -- x86-64, esp., makes more
use of (now more numerous) registers.

Case study
PLP 4e presents LLVM on ARM-32 (e.g., iPhone) and GCC on x86 (32 & 64)
GCC on x86-64
register usage
16 64-bit integer registers, 16 128-bit FP/SSE registers

(various other legacy registers that are not commonly used)
naming of registers is complicated, due to evolution of the ISA over

the years
rsp stack pointer; callee-saved
rbp frame pointer (if used); callee-saved

«——1rdi, rsi, rdx, rcx, r8, and r9 (in that order)
first 6 integer arguments; caller-saved

rbx, 12,13, ri4, r15 callee-saves temporaries

3 1 caller-saves temporaries
static link (if needed) is passed in r1e.

rax and (if needed) rdx are used to return function value

rax and rdx are over-written by division operation
several other similar special cases -- non-orthogonal architecture

/K “Red zone”

(128 bytes)

P Space to build
argument lists
link)

(Static link

Local variables
and Current frame

wmfs?
Other saved
registers

Direction of
stack growth
(lower addresse:

eturn a re@
L7

Previous
Arguments (calling)
/4_\ frame
n

Note: In previous incarnations of x86 ABI, SP points to last used location.
On some machines/OSes, it points to first unused location. Beware!

Actual calling sequence
Caller
1) saves caller-saves registers into temporary locations in
current frame, if necessary
2) puts args into registers and (if necessary) the build area at
the top of the current frame
3) puts static link in r10 (skipped for C, or for leyel-0 callees)
4) executes call é
v
In prologue, Callee |
1) pushes fp (decrementing sp by 8)
2) copies sp into fp, creating new fp

3) pushes callee-saves regs, if necessary

4) subtracts rest of frame size from sp ’
In epilogue, Callee <

1) sets return value, if any 047

2) restores callee-saved regs, if any

3) copies fp into sp, deallocating frame

4) pops fp off stack
5) returns

Steps 3) and 4) can be combined into a one-byte 'leave'
instruction. It's never been entirely clear to me why compilers
sometimes generate it and sometimes don't -- perhaps details of
timing on particular processor implementations.

After call, Caller
1) moves return value from register to wherever it's needed
(if appropriate)
2) restores caller-saves registers lazily over time, as their
values are needed

Many parts of sequence can be elided in special cases.

In particular
- many routines get by w/out fp
- red zone lets small leaf routines avoid updating sp

Register windows

The Berkeley RISC, and its offspring, the SPARC, use hardware-implemented
register windows in an attempt to reduce the amount of register saving and
restoring, and the number of register-register moves.

Unfortunately, these also dramatically complicate context switching
(both for kernel and for thread packages), and introduce the problem of
window overflow/underflow, partially or entirely negating their performance

advantage.

p—————

Outputs

Outputs

Locals

r7
Globals Globals Globals

r0

Main Subroutine Subroutine
program A B

The Itanium (x64) also has register windows, of variable size.

Access to non-local variables via static links

Each frame points to the frame of the (correct instance of)
the routine inside which it was declared. In the absence of
formal subroutines, "correct" means closest to the top of the
stack.

You access a variable in a scope k levels out by following
k static links and then using the known offset within the
frame thus found.

You set up static links as follows:
case 1: callee is nested (directly) inside you E
callee's static link is pointer to your frame
case 2: callee is k scopes out (k may be 0)
callee's static link is found by indirecting off your
own static link k times

Procedures as parameters: ;

When you form the closure, you figure out a static link just
as if you were going to call the routine directly; the closure
consists of the routine's address and the static link.


MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad


