Notes for CSC 2/454, Nov. 25 and 30, 2020

Data Abstraction and Object Orientation

Recall discussion of scoping and encapsulation from Chap. 3
Historical development of abstraction mechanisms is roughly:

static set of variables Basic
locals Fortran
statics Fortran, Algol 60, C
modules Modula-2, Ada 83
module types Euclid
objects Smalltalk, C++, Eiffel, Java, C#, Scala,
Swift, Ruby, Python, ...
object-based Self, JavaScript
type extensions Oberon, Modula-3, Ada 95

Except that objects originated with Simula 67 but were otherwise ignored
for most of the '70s, while people continued to refine modules
(Simula 67 didn't have data hiding).

The 3 key factors in OO programming (as codified by Wegner):

encapsulation (data hiding)
modules do this, too -- e.g., packages in Java and namespases
in C++ -- but they don't usually give you multiple instances
inheritance
dynamic method binding
this is crucial and often doesn't get looked at carefully --
and the default in C++ is different from what you may be used to
in Java

Visibility rules
Public and Private parts of an object declaration/definition.

(Some other options in some languages -- e.g., package in Java or
protected in Java or C++ [which treat them slightly differently])

C++ distinguishes among

public visible to anybody
protected visible only to this class and its descendants
private visible only to this class

Default is public for structs and private for classes.

C++ base classes can also be public, private, or protected.
E.g.
class circle : public shape { ...
anybody can convert (assign) a circlex into a shapex
class circle : protected shape { ...
only members and friends of circle or its derived classes can
convert (assign) a circlex into a shapex
class circle : private shape { ...
only members and friends of circle can convert (assign) a
circlexinto a shapex

Java rules are slightly different:
public: visible to anybody
(package) visible only to this class and classes in the same package
protected visible only to this class, its descendants, and classes
in the same package
private visible only to this class
Package is the default; it's what you get with no specifier.
'package’ isn't a keyword.

Recall that a declaration introduces a name, and enough information
about it to allow it to be used, at least in limited contexts. A
definition provides enough information for the compiler to implement
the object.

2 reasons to put things in the declaration:
(1) so programmers know how to use the object

Many module-based languages separate modules into pieces: one for
the declaration and one for the definition, usually placed in
separate files for the purpose of separate compilation.

Declaration modules may be compiled into symbol table data, or they
may be textually "included" into user and definition modules. The
latter option is a more structured, formal version of the typical
".h"and ".c" files of C.

(2) so the compiler knows how to generate code for uses of the object

At the very least the compiler needs to know how to invoke the methods
of the object. If it must allocate space for the object it also needs

to know its size. To figure out the size, the compiler will often need

to know information that the programmer does not need to know, such as
the types (sizes) of private data members.

This can get awkward. It's part of the reason why some newer languages
(e.g., Java & C#) dispense with separate declaration and implementation
modules. The compiler peruses the single body of code and extracts what
users of it need. If you want teams to develop in parallel, you start

by creating skeleton versions, which each team uses as an interface
specification while they flesh out their own part.

Typically if you modify a definition module you have to recompile only
that definition module. If you change the private portions of a
declaration module (the parts the compiler depends on), you have to
recompile both the definition module and the user modules, but you don't
have to change the source of user modules.

A few C++ and Java features you may not have learned:

destructors
These are the opposite of constructors. Mostly they're needed
for explicit space management. Java can get by without them
because it has garbage collection. Given the availability of
destructors, C++ programmers have invented other clever uses for
them, e.g. for locking:

std::mutex my_lock;

{
std::lock_guar &my_lock) ;
// mis adumry object whose constructor acquires
// the lock passed as an argument, and then keeps a
// pointer to this lock in a private data member.
// code that we'd like to have executed atomically
- // atend of scope, m's destructor automatically releases my_lock
}

unexpected constructor calls
Cosntructors are relatively straightforward in a language with a
reference model of variables. With a value model, however, we
have to arrange to call them at elaboration time for declared
objects and sometimes in the middle of expressions for
temporaries as well.

Consider an object constructed in an argument list:

void Qm" v }
my_class o02(args); // constructed here
f // passed by value

— Tfoo(my_cla (@‘ // constructed w/in arg list

Because foo's argument is passed by value, the calling sequence
needs to invoke the copy constructor. In the first call, this
makes good sense. In the second call it seems like a shame,
because what's being copied is a temporary that will be
destroyed immediately after being passed. (If you put print
statements or other side effects in the constructor and
destructor [bad idea!], you may be able to see this happen.

Or not: the compiler is allowed to elide calls to copy
constructors when the copied object will never be used again.)

A similar situation happens when returning:
my_class 03 = bar(args);

Here bar is a method that presumably returns an object of type
my_class. The declaration of 03 will invoke the copy constructor,
but copying from a temporary that was created back in bar just for
the sake of returning.

The copies in both of these examples can be eliminated "for sure"
in C++11 using move constructors, which use rvalue references
(indicated in an argument list with a double ampersand &&). A
move constructor will be used whenever the compiler knows that
the copied-from object will never be used again. Typically that

constructor will modify the copied-from object's state so that
its destructor won't free stuff we still need.

rvalue references are also used for move assignment methods.
Programmers are free to use them for for other purposes, as
well, but this requires great care -- it's easy to end up with
bugs analogous to dangling references.

initialization
Straightforward in Java because all object-typed variables are
references. Data members of object types are simply initialized
to null; you specify arguments to the constructors when you call
new, explicitly. Arguments for the superclass constructor, if
any, can be provided in a pseudo-call, which must be the first
statement of the constructor:

public child(a, b, c) {
super(a, b);

If you don't provide the super() call, the compiler inserts a
call to the zero-arg constructor (which must exist).

Harder in C++ because of expanded (elaborated) objects -- not
referenced w/ pointers: actually there, "in place".

C++ requires that every object be initialized by a call to a
constructor. The rules for doing this for expanded objects are
quite complex. For example:

objects as membe -
foo: :f @4 ——
memberl(§ b memberZ { ...

args®, argsl, args?2, etc. need to be specified in terms of
args. The reason these things end up in the header of foo
is that they get executed before foo's constructor does,
and the designers consider it good style to make that clear
in the header of foo: : foo.

:

|

&

Commonly the arg lists are singletons (for copy constructors),
and you might be tempted to replace the code

foo::fo 8 member membe2 (LA ...

with

foo::foo(a, b, c) {
memberl = a;
member2 = b;

but this is not the same: the latter eption calls zero-arg
constructors for memberl and member2 before calling foo::foo(),
and then calls operator=.

Note that the constructors for base classes are called before the
constructors for children (with multiple inheritance, they're called in
the order the specified in the header of the child). Destructors for base
classes are called after the destructors for children.

In general, the C++ compiler will generate default versions of

any needed zero-arg, copy, and move constructors (and operator=)
that weren't provided by the programmer. These just construct
their sub-members and, for the copy case, copy members of

built-in types. Automatic generation can be disabled by

explicitly deleting the constructor:

class glarch {
public:
glarch() = delete;

In this case, if a zero-arg constructor is needed, the compiler
will produce a compile-time error message.

initialization v. assignment
not the same in C++!

foo::operator=(&foo) v. foo::foo(&foo)

foo b;

//c o-arg constructor
foo f & b;

// calls one-arg "copy constructor".
// This is syntactic sugar for foo f(b);

foo b, f;
// calls no-arg constructor
f =b;

// calls operator=

classes as members
Called "inner" classes in Java.

Q: if Inneris a member of Outer, can Inner's methods see
Outer's members, and if so, which instance do they see?

ass B {
method foo()
i:=3 // is this allowed?

C++ and C# say no, inner classes can see only static fields of
the parent. Java says yes, instances of inner class belong to

an instance of the outer class, and can access data members of
that class. This capability provides much (most?) of the power
of nested subroutines, which C++ and Java lack.

Java can be thought of as having four kinds of inner classes.
Static inner classes are are only "sorta" inner: they have
limited visibility, but they don't need an outer class instance
to exist.

Member classes (class instance within a class

instance) contain a hidden reference to the parent object.
Local classes (class instance within a method of a class
instance) contain the hidden reference AND copies of the
method's parameters and final locals (but not the non-final
locals -- so there's still no static chain).

Anonymous inner classes are like local classes, but can have only
one instance.

virtual functions
Virtual functions provide C++'s dynamic method binding: you
don't know at compile time what type the object referred to by a
variable will be at run time.

Simula also had virtual functions (all of which were abstract).
In most modern OO languages, (Java, C#, Scala, Ruby, Python, ...)
all member functions are virtual, so you don't need the keyword.

Key question: if child is derived from parent and | have a
parentx p (or a parent& p) that points (refers) to an object
that's actually a child, what member function do | get when |
call p—>f (p.f)? Bydefaultin C++1getp's f, because p's
type is parentx. Butif f is a virtual function, | get c's f.

In Java all methods are virtual.

Also note: If a C++ virtual function has a "@" body in the = Cvi

parent class, then the function is said to be a "pure" virtual

function and the parent class is said to be "abstract". In Java

you prepend the method declaration with the "abstract" keyword.
You can't declare objects of an abstract class; you have to

declare them to be of derived classes. Moreover any derived

class must provide a body for the pure virtual function(s)

(unless it too is supposed to be abstract).

BTW: note that inheritance does not obviate the need for generics.

You might think: hey, | can define an abstract list class and then

derive int_list, person_list, etc. from it, but the problem is you won't
be able to talk about the elements because you won't know their types.
That's what generics are for: abstracting over types. See the lecture

on polymorphism (generics).

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

MLS iPad

