
==
Implementation of classes

Data members of classes are implemented just like structs (records).
With (single) inheritance, derived classes have extra fields at the end.
A pointer to the parent and a pointer to the child contain the same
address -- the child just knows that the struct goes farther than the
parent does.

Non-virtual functions require no extra space at run time; the compiler
just calls the appropriate version, based on type of variable. Member
functions are passed an extra, hidden, initial parameter: 'this' (called
'current' in Eiffel and 'self' in Smalltalk).

Virtual functions are the only thing that requires any trickiness. They
are implemented by creating a dispatch table ("vtable") for the class
and putting a pointer to that table in the data of the object.Objects
of a derived class have a different vtable. In that table, functions
defined in the parent come first, though some of the pointers point to
overridden versions. You could put the whole vtable table in the object
itself. That would save a little time, but potentially waste a lot_ of
space.

The C++ philosophy is to avoid run-time overhead whenever possible.
(Sort of the legacy from C). That's why non-virtual functions are the
default. Most other OO languages have much more run-time support.

Note that if you can query the type of an object, then you need to be
able to get from the object to run-time type info. The standard
implementation technique is to put a pointer to the type info at the
beginning of the vtable. Of course you only have a vtable in C++ if
your class has virtual functions. That's why you can't do a dynamic_cast
on a pointer whose static type doesn't have virtual functions.

--
Mix-in inheritance

Simpler to implement than true multiple inheritance. Each class can
have one "real" parent and an arbitrary number of interfaces, each of
which is fully abstract: no data members (other than statics); no
non-pure-virtual methods. Now you create an extra vtable for each
interface your object supports, and you embed pointers to these vtables
among the data of each object. Each interface vtable begins with a
field that gives the offset back from the vtable pointer to the
beginning of the object in which that pointer appears:

class widget {...

interface sortable {...
interface graphable {...
interface storable {...

class named_widget extends widget implements sortable { ...

class augmented_widget extends named_widget
implements graphable, storable {...

The augmented_widget part of the vtable includes the (non-interface)
methods of widget and named_widget.

If the compiler needs to pass an augmented_widget to a method that
expects a graphable, it passes the graphable view. (Likewise sortable
or storable.) The method assumes the thing it was passed begins with
a vtable pointer. It dereferences this pointer to find the vtable, then pulls
the offset out of the first word of the vtable and subtracts it from the
provisional 'this' it was passed, to get the "real" 'this', which it
can pass to other methods.

Classic Java also allows static fields in Interfaces.
Starting with Java 8, Interfaces can have

static methods
Straightforward: no access to this

default methods
Designed to allow extension of an interface without rewriting

all existing uses of that interface.
Implementation is a little tricky.

no access to members other than the methods and static fields
of the interface itself

does need access to vtable, however: for each class that
needs the default code, the compiler generates a static,
class-specific forwarding routine that accepts the
concrete-class-specific this parameter, adds back in the
this correction that the regular calling sequence just
subtracted out, and passes the resulting
pointer-to-vtable-pointer to the default method.

c

c
fwd(this) {

default(this+c);
}

--
For true multiple inheritance, see the PLP companion site.

foo::l

foo::n

foo::m

foo::k

c

class foo {

int a;

double b;

char c;

public:

virtual void k(...

virtual int l(...

virtual void m();

virtual double n(...

...

} F;

F

a

b

foo’s vtable

code pointers

class bar : public foo {

int w;

public:

void m() override;

virtual double s(...

virtual char *t(...

...

} B;

B

a

b

w

c

bar’s vtable

foo::l

foo::n

bar::s

bar::t

bar::m
code pointers

foo::k

