
Functional programming
28 and 30 Sept. 2020

=================================
Functional programming

Functional languages such as Lisp/Scheme and ML/Haskell/OCaml/F#
are an attempt to realize Church's lambda calculus in practical form as
a programming language.

The key idea: do everything by composing functions.
No mutable state; no side effects.

So how do you get anything done?

Recursion

Takes the place of iteration.

Some tasks are "naturally" recursive. Consider for example the
function

{ a if a = b
gcd(a, b) = { gcd(a-b, b) if a > b

{ gcd(a, b-a) if b > a
(Euclid's algorithm).

We might write this in C as

int gcd(int a, int b) {
/* assume a, b > 0 */
if (a == b) return a;
else if (a > b) return gcd(a-b, b);
else return gcd(a, b-a);

}

Other tasks we're used to thinking of as naturally iterative:

typedef int (*int_func) (int);
int summation(int_func f, int low, int high) {

/* assume low <= high */
int total = 0; ___
int i; \ f(i)
for (i = low; i <= high; i++) { /__

total += f(i); low ≤ i ≤ high
}
return total;

}

But there's nothing sacred about this "natural" intuition.
Consider:

int gcd(int a, int b) {
/* assume a, b > 0 */
while (a != b) {

if (a > b) a = a-b;
else b = b-a;

}
return a;

}

typedef int (*int_func) (int);
int summation(int_func f, int low, int high) {

/* assume low <= high */
if (low == high) return f(low);
else return f(low) + summation(f, low+1, high);

}

More significantly, the recursive solution doesn't have to be any more
expensive than the iterative solution. In OCaml, the gcd function
would be written

let rec gcd a b =
if a = b then a
else if a > b then gcd (a - b) b
else gcd a (b - a);;

Things to notice in this code:
top-level forms, let
rec
necessity of else
application via justaposition, use of parentheses
double semicolons (tells REPL you're done and it should interpret)

Note that the recursive call is the last thing gcd does — no further
computation after the return. This is called tail recursion.
Functional language compilers will translate this as, roughly:

gcd(a, b) {
top:

if a == b return a
elsif a > b

a := a - b
goto top

else
b := b - a
goto top

}

Functional programmers get good at writing functions that are naturally
tail recursive. For example, instead of

let rec sum1 f low high =
if low = high then f low
else (f low) + (sum1 f (low + 1) high);;

we could write

let rec sum2 f low high st =
if low = high then st + (f low)
else sum2 f (low + 1) high (st + (f low));;

Here ‘st’ is a subtotal that accumulates what we've added up so far.

Things to notice in this code:
Function application groups more tightly than addition.
We could have left off the parentheses around "f low".
In general, "normal" functions group left to right;

operators have precedence.

Unfortunately, now we have to provide an extra zero parameter to the call:

sum1 (fun x -> x*x) 1 10;;
- : int = 385

sum2 (fun x -> x*x) 1 10 0;;
- : int = 385

Things to notice in this code:
fun is a lambda expression — a function definition

To get rid of that extra parameter, we can wrap it:

let sum3 f low high =
let rec helper low st =
let new_st = st + (f low) in
if low = high then new_st
else helper (low + 1) new_st in

helper low 0;;

Things to notice in this code:
internal let
lexical nesting
lack of rec on declaration of sum3

(compiler wouldn't have complained; just unnecessary)

NB: This tail recursive code exploits the associativity of addition;
a compiler is unlikely to do that for us automatically. There exist
automatic mechanisms to turn non-tail-recursive functions into
tail-recursive ones, using what's known as continuation passing style,
but that wouldn't be as efficient in this case.

--

Sometimes you'll hear someone argue that recursion is algorithmically
inferior to iteration. Fibonacci numbers are sometimes given as an
example:

let rec fib1 n =
match n with
| 0 -> 1
| 1 -> 1
| _ -> fib1 (n-1) + fib1 (n-2);;

This takes O(2n) time, where O(n) is possible. In a von Neumann
language we are taught to write

int fib(int n) {
int f1 = 1; int f2 = 1;
int i;
for (i = 2; i <= n; i++) {

int temp = f1 + f2;
f1 = f2; f2 = temp;

}
return f2;

}

But there's no reason why we have to do it the slow way in OCaml.
We can write the following instead:

let fib2 n =
let rec helper f1 f2 i =
if i = n then f2
else helper f2 (f1 + f2) (i + 1) in

helper 0 1 0;;

Thinking about recursion as a direct, mechanical replacement for
iteration is the wrong way to look at things. One has to get used to
thinking in a recursive style.

NB: One can actually do better than O(n) for Fibonacci numbers.
In particular, F(n) is the nearest whole number to ϕⁿ/sqrt(5), where
ϕ = (1 + sqrt(5))/2, but this has high constant-factor costs and

problems with numeric precision. For modest n, the O(n) algorithm is
perfectly respectable.

NB2: OCaml has imperative features, so we can write the iterative
version. It runs against the grain of the language, however (like
writing C-like code in C++, only worse), and you won't be allowed to
do it in this course.

NB3: Recursion isn't enough by itself to create a really useful
functional language. You also need of higher-order functions
(functional forms). More on this later.

--

A more complete list of necessary features for functional programming,
many of which are missing in some imperative languages:

recursion
1st class and high-order functions (including unlimited extent)
serious polymorphism
powerful list facilities
fully general aggregates
structured function returns
garbage collection

Lisp also has
homoiconography
self-definition
read-eval-print

ML/Haskell/F# have
Milner type inference
pattern matching
implicit currying
syntactic sugar: list comprehensions, monads

These are not necessarily present in other functional langs.

There are lots of functional programming languages.
Lisp and ML are the roots of the two main trees.

Lisp
- dates from about 1960.
- originally developed by John McCarthy, who received the Turing Award in 1971.
- inspired by the lambda calculus, Alonzo Church's mathematical

formulation of the notion of computation (which you may have seen a
bit of in 173).

- two most widely used dialects today are Common Lisp (big, full-featured)
and Scheme/Racket (smaller and more elegant, but getting bigger).

ML
- dates from the mid-to-late 1970s.
- originally developed by Robin Milner, who received the Turning Award in 1991.
- intended to be safer and more readable than Lisp
- two most widely used dialects today are SML and OCaml.

Many academics consider SML more elegant, but OCaml is more
"practical" -- it has a better toolchain and is widely used in industry.

- Microsoft's F# is an OCaml descendant.
- Haskell is an ML descendant (through Miranda); it's the leading

language for research in functional programming, and is increasingly
popular in industry as well. Haskell is distinguished for being
purely functional (no imperative features at all) and for using lazy
(normal-order) evaluation.

Advantages of functional languages:

- lack of side effects makes programs easier to understand
- lack of explicit evaluation order (in some languages) offers

possibility of parallel evaluation (e.g. MultiLisp)
- lack of side effects and explicit evaluation order simplifies some

things for a compiler (provided you don't blow it in other ways)
- programs are often surprisingly short
- language can be small yet very "powerful"

Challenges:

- difficult (but not impossible!) to implement efficiently on
von Neumann machines

- lots of copying of data through parameters
- (apparent) need to create a whole new array in order to change

one element
- very heavy use of references (space and time and locality problem)
- frequent procedure calls
- heavy space use for (non-tail) recursion

- but anything you can write with a loop in an imperative
language is straightforward to write as tail recursion

- requires garbage collection

- difficult to integrate I/O into purely functional model
leading approach is the monads of Haskell — sort of an imperative
wrapper around a purely functional program; allows functions to be
used not only to calculate values, but also to decide on the order in
which imperative actions should be performed.

Requires a different mode of thinking by the programmer.

MLS iPad

MLS iPad

MLS iPad

MLS iPad

